0000000000142979

AUTHOR

Christian Münch

0000-0003-3832-090x

showing 5 related works from this author

BAG3 Proteomic Signature under Proteostasis Stress

2020

The multifunctional HSP70 co-chaperone BAG3 (BCL-2-associated athanogene 3) represents a key player in the quality control of the cellular proteostasis network. In response to stress, BAG3 specifically targets aggregation-prone proteins to the perinuclear aggresome and promotes their degradation via BAG3-mediated selective macroautophagy. To adapt cellular homeostasis to stress, BAG3 modulates and functions in various cellular processes and signaling pathways. Noteworthy, dysfunction and deregulation of BAG3 and its pathway are pathophysiologically linked to myopathies, cancer, and neurodegenerative disorders. Here, we report a BAG3 proteomic signature under proteostasis stress. To elucidat…

ProteomicsautophagyCell signalingCellular homeostasisinteractomeBiologyBAG3InteractomeArticleStress PhysiologicalHumansddc:610Protein Interaction Mapsprotein quality controllcsh:QH301-705.5Adaptor Proteins Signal TransducingProto-Oncogene Proteins c-yesproteostasisBAG3AutophagyMolecular Sequence Annotationstress responseGeneral MedicineCell biologyGene OntologyHEK293 CellsAggresomeProteostasislcsh:Biology (General)Multivariate AnalysisSignal transductionApoptosis Regulatory ProteinsProteasome InhibitorsProtein BindingCells
researchProduct

Protein content and lipid profiling of isolated native autophagosomes

2021

AbstractAutophagy is a central eukaryotic catabolic pathway responsible for clearance and recycling of an extensive portfolio of cargoes, which are packed in vesicles, called autophagosomes, and are delivered to lysosomes for degradation. Besides basal autophagy, which constantly degrades cellular material, the pathway is highly responsive to several stress conditions. However, the exact protein content and phospholipid composition of autophagosomes under changing autophagy conditions remain elusive so far. Here, we introduce a FACS-based approach for isolation of native unmanipulated autophagosomes and ensure the quality of the preparations. Employing quantitative proteomics and phospholip…

Protein contentAutophagosomechemistry.chemical_compoundCatabolismChemistryVesicleAutophagyQuantitative proteomicsPhospholipidLipid profilingCell biology
researchProduct

SIK2 orchestrates actin-dependent host response upon Salmonella infection

2021

Significance Through conducting quantitative proteomics upon Salmonella infection, we identified a SIK2 signaling network, implementing the kinase into a so far concealed biological function. Our data exposed SIK2 as a central orchestrator of an actin regulatory network, coordinating the stability of Salmonella-containing vacuole (SCV) and cellular actin assembly, in order to limit the acute phase of the infection. Most strikingly, SIK2 is not exclusively acting locally on actin assembly associated with the SCV but impacts the actin cytoskeleton architecture in its entirety upon Salmonella infection. Our work provides a mechanistic framework for how the actin cytoskeleton is regulated and h…

ProteomicsSalmonellaactin cytoskeletonImmunoblottingArp2/3 complexSalmonella infectionmacromolecular substancesProtein Serine-Threonine Kinasesmedicine.disease_causeBiochemistry03 medical and health sciencesMice0302 clinical medicineSalmonellamedicineXenophagyAnimalsHumansArp2/3 complexProtein Interaction MapsPhosphorylationActinCells Cultured030304 developmental biologyActin nucleation0303 health sciencesMultidisciplinarybiologyEpithelial CellsBiological Sciencesmedicine.diseaseActin cytoskeletonHCT116 CellsPhosphoproteinsActinsCell biologySalmonella-containing vacuoleHEK293 CellsFormins407Host-Pathogen Interactionsbiology.proteinRNA Interference030217 neurology & neurosurgeryhost–pathogen interactionsHeLa CellsSignal TransductionProceedings of the National Academy of Sciences of the United States of America
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct