0000000000143000
AUTHOR
Imène Reghioua
Ge-doped silica nanoparticles: production and characterisation
Silica nanoparticles were produced from germanosilicate glasses by KrF laser irradiation. The samples were investigated by cathodoluminescence and scanning electron microscopy, providing the presence of nanoparticles with size from tens up to hundreds of nanometers. The emission of the Germanium lone pair center is preserved in the nanoparticles and atomic force microscopy revealed the presence of no spherical particles with a size smaller than ~4 nm. The absorption coefficient enhancement induced by Ge doping is reputed fundamental to facilitate the nanoparticles production. This procedure can be applied to other co-doped silica materials to tune the nanoparticles features.
Coupled irradiation-temperature effects on induced point defects in germanosilicate optical fibers
International audience; We investigated the combined effects of temperature and X-rays exposures on the nature of point defects generated in Ge-doped multimode optical fibers. Electron paramagnetic resonance (EPR) results on samples X-ray irradiated at 5 kGy(SiO2), employing different temperatures and dose rates, are reported and discussed. The data highlight the generation of the Ge(1), Ge(2), E0 Ge and E0 Si defects. For the Ge(1) and Ge(2), we observed a decrease in the induced defect concentrations for irradiation temperatures higher than *450 K, whereas the E0 defects feature an opposite tendency. The comparison with previous post-irradiation thermal treatments reveals peculiar effects…
Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers
International audience; We performed electron paramagnetic resonance (EPR) measurements on γ and X ray irradiated Ge doped and Ge/F co-doped optical fibers. We considered three different drawing conditions (speed and tension), and for each type of drawing, we studied Ge and Ge/F doped samples having Ge doping level above 4% by weight. The EPR data recorded for the γ ray irradiated fibers confirm that all the samples exhibit a very close radiation response regardless of the drawing conditions corresponding to values used for the production of specialty fibers. Furthermore, as for the X irradiated materials, in the γ ray irradiated F co-doped fibers, we observed that the Ge(1) and the Ge(2) d…
Study of silica-based intrinsically emitting nanoparticles produced by an excimer laser
International audience; We report an experimental study demonstrating the feasibility to produce both pure and Ge-doped silica nanoparticles (size ranging from tens up to hundreds of nanometers) using nanosecond pulsed KrF laser ablation of bulk glass. In particular, pure silica nanoparticles were produced using a laser pulse energy of 400 mJ on pure silica, whereas Ge-doped nanoparticles were obtained using 33 and 165 mJ per pulse on germanosilicate glass. The difference in the required energy is attributed to the Ge doping, which modifies the optical properties of the silica by facilitating energy absorption processes such as multiphoton absorption or by introducing absorbing point defect…
Overview of radiation induced point defects in silica-based optical fibers
International audience; Silica-based optical fibers, fiber-based devices and optical fiber sensors are today integrated in a variety of harsh environments associated with radiation constraints. Under irradiation, the macroscopic properties of the optical fibers are modified through three main basic mechanisms: the radiation induced attenuation, the radiation induced emission and the radiation induced refractive index change. Depending on the fiber profile of use, these phenomena differently contribute to the degradation of the fiber performances and then have to be either mitigated for radiation tolerant systems or exploited to design radiation detectors and dosimeters. Considering the stro…
Effect of irradiation temperature on the radiation induced attenuation of Ge-doped fibers
International audience; The UV-visible radiation induced attenuation (RIA) was studied in Ge-doped optical fibers, during X-ray (10 keV) irradiations at different temperatures. By comparing the spectra recorded in dissimilarly irradiated samples we evidenced the impact of the irradiation temperature. In details, we highlighted that, from a certain dose, increasing the temperature the RIA decreases for wavelengths lower than 470 nm, whereas at higher wavelengths the RIA depends only on the dose. Such findings suggest that it is possible to distinguish the irradiation temperature by comparing the signal at two different wavelengths. From the microscopic point of view, it appears that the RIA …
Irradiation temperature influence on the in-situ measured radiation induced attenuation of Ge-doped fibers
International audience; We report an experimental investigation on the radiation induced attenuation (RIA) in the ultraviolet-visible domain for Ge-doped optical fibers, during X-rays (10 keV) exposure at different temperatures. The objective is to characterize the impact of the irradiation temperature on the RIA levels and kinetics. Our data highlight that for dose exceeding 1 kGy(SiO2) the RIA spectrum changes with the irradiation temperature. In particular, for wavelengths below 470 nm the RIA depends both on the dose and on the irradiation temperature, whereas at higher wavelengths the RIA depends only on the dose. From the microscopic point of view the origin of this behavior is explai…