0000000000143004

AUTHOR

ÁNgel Tolosa

Optical implementation of micro-zoom arrays for parallel focusing in integral imaging.

We report 3D integral imaging with an electronically tunable-focal-length lens for improved depth of field. The micro-zoom arrays are generated and implemented based on the concept of parallel apodization. To the best of our knowledge, this is the first report of parallel dynamic focusing in integral imaging based on the use of micro-zoom arrays.

research product

Examining the utility of pinhole-type screens for lightfield display

The use of microlens arrays for lightfield display has the drawback of providing images with strong chromatic aliasing. To overcome this problem, pinhole-type lightfield monitors are proposed. This paper is devoted to evaluating the capability for such lightfield monitors to offer the user a convincing 3D experience with images with enough brightness and continuous aspect. Thus, we have designed a psychophysical test specifically adapted for lightfield monitors, which allowed us to confirm the usability of pinhole-type monitors.

research product

Enhanced field-of-view integral imaging display using multi-Köhler illumination.

A common drawback in 3D integral imaging displays is the appearance of pseudoimages beyond the viewing angle. These pseudoimages appear when the light rays coming from each elemental image are not passing through the corresponding microlens, and a set of barriers must be used to avoid this flipping effect. We present a pure optical arrangement based on Köhler illumination to generate these barriers thus avoiding the pseudoimages. The proposed system does not use additional lenses to project the elemental images, so no optical aberrations are introduced. As an added benefit, Köhler illumination provides a higher contrast 3D display. This work was supported in part by the Plan Nacional I + D …

research product

The Lightfield Microscope Eyepiece

Lightfield microscopy has raised growing interest in the last few years. Its ability to get three-dimensional information about the sample in a single shot makes it suitable for many applications in which time resolution is fundamental. In this paper we present a novel device, which is capable of converting any conventional microscope into a lightfield microscope. Based on the Fourier integral microscope concept, we designed the lightfield microscope eyepiece. This is coupled to the eyepiece port, to let the user exploit all the host microscope’s components (objective turret, illumination systems, translation stage, etc.) and get a 3D reconstruction of the sample. After the optical design, …

research product

Fast and robust wave optics-based reconstruction protocol for Fourier lightfield microscopy

Fourier lightfield microscopy (FLMic) is a powerful technique to record 3D images of thick dynamic samples. Belonging FLMic to the general class of computational imaging techniques, its efficiency is determined by several factors, like the optical system, the calibration process, the reconstruction algorithm, or the computation architecture. In the case of FLMic the calibration and the reconstruction algorithm should be fully adapted to the singular features of the technique. To this end, and concerning the reconstruction, we discard the use of experimental PSFs, and propose the use of a synthetic one, which is calculated on the basis of paraxial optics and taking into account the equal inf…

research product