0000000000143047

AUTHOR

Alexey V. Ustinov

showing 9 related works from this author

Magnons at low excitations: Observation of incoherent coupling to a bath of two-level systems

2019

Collective magnetic excitation modes, magnons, can be coherently coupled to microwave photons in the single excitation limit. This allows for access to quantum properties of magnons and opens up a range of applications in quantum information processing, with the intrinsic magnon linewidth representing the coherence time of a quantum resonator. Our measurement system consists of a yttrium iron garnet (YIG) sphere and a three-dimensional (3D) microwave cavity at temperatures and excitation powers typical for superconducting quantum circuit experiments. We perform spectroscopic measurements to determine the limiting factor of magnon coherence at these experimental conditions. Using the input-o…

PhysicsCoherence timeQuantum PhysicsPhotonCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMagnonYttrium iron garnetFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesLaser linewidthchemistry.chemical_compoundchemistry0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physics0210 nano-technologyQuantum Physics (quant-ph)ExcitationCoherence (physics)Microwave cavityPhysical Review Research
researchProduct

Analog quantum simulation of the Rabi model in the ultra-strong coupling regime

2017

The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes–Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coup…

Quantum PhysicsPhysicsScienceComputerSystemsOrganization_MISCELLANEOUSQFOS: Physical sciencesddc:530lcsh:QQuantum Physicslcsh:ScienceQuantum Physics (quant-ph)Article
researchProduct

Erratum: “Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment” [Appl. Phys. Lett. 108, 032601 (2016)]

2018

010302 applied physicsPhysicsPhysics and Astronomy (miscellaneous)Magnetic momentCondensed matter physics02 engineering and technologyTransmonConcentric021001 nanoscience & nanotechnology01 natural sciencesMagnetic anisotropyQubit0103 physical sciences0210 nano-technologyAnisotropyQuantum computerApplied Physics Letters
researchProduct

Introducing coherent time control to cavity magnon-polariton modes

2020

By connecting light to magnetism, cavity-magnon-polaritons (CMPs) can build links from quantum computation to spintronics. As a consequence, CMP-based information processing devices have thrived over the last five years, but almost exclusively been investigated with single-tone spectroscopy. However, universal computing applications will require a dynamic control of the CMP on demand and within nanoseconds. In this work, we perform fast manipulations of the different CMP modes with independent but coherent pulses to the cavity and magnon system. We change the state of the CMP from the energy exchanging beat mode to its normal modes and further demonstrate two fundamental examples of coheren…

Magnetism530 PhysicsGeneral Physics and AstronomyFOS: Physical sciencesPhysics::Opticslcsh:AstrophysicsTopology01 natural sciences010309 opticsNormal mode0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)lcsh:QB460-466Polaritonddc:530010306 general physicsQuantum computerPhysicsQuantum networkSpintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter::OtherPhysicsMagnonNanosecond530 Physiklcsh:QC1-999lcsh:PhysicsCommunications Physics
researchProduct

Magnetization Dynamics in Proximity-Coupled Superconductor-Ferromagnet-Superconductor Multilayers

2020

In this work, magnetization dynamics is studied in superconductor/ferromagnet/superconductor three-layered films in a wide frequency, field, and temperature ranges using the broad-band ferromagnetic resonance measurement technique. It is shown that in presence of both superconducting layers and of superconducting proximity at both superconductor/ferromagnet interfaces a massive shift of the ferromagnetic resonance to higher frequencies emerges. The phenomenon is robust and essentially long-range: it has been observed for a set of samples with the thickness of ferromagnetic layer in the range from tens up to hundreds of nanometers. The resonance frequency shift is characterized by proximity-…

magneettiset ominaisuudetMaterials sciencesuprajohtavuusFOS: Physical sciencesmagnetization dynamicsGeneral Physics and AstronomyApplied Physics (physics.app-ph)spin wavesmagnonssuprajohteetSuperconductivity (cond-mat.supr-con)MagnetizationCondensed Matter::Materials ScienceferromagnetsCondensed Matter::SuperconductivityAnisotropySuperconductivityMagnonicsMagnetization dynamicsCondensed matter physicstype-II superconductorsCondensed Matter - SuperconductivityPhysics - Applied PhysicsFerromagnetic resonanceMagnetic anisotropyFerromagnetismproximity effectmultilayer thin filmsCondensed Matter::Strongly Correlated ElectronsohutkalvotPhysical review applied
researchProduct

Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment

2015

We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10us. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to convent…

SuperconductivityPhysicsQuantum PhysicsPhysics and Astronomy (miscellaneous)Magnetic momentCondensed Matter - SuperconductivityFOS: Physical sciencesQuantum simulator02 engineering and technologyTransmon021001 nanoscience & nanotechnology01 natural sciences3. Good healthSuperconductivity (cond-mat.supr-con)Quantum circuitComputer Science::Emerging TechnologiesPlanarQuantum electrodynamicsQubit0103 physical sciencesQuantum Physics (quant-ph)010306 general physics0210 nano-technologyCoherence (physics)Applied Physics Letters
researchProduct

Quantum simulation of the spin-boson model with a microwave circuit

2017

We consider superconducting circuits for the purpose of simulating the spin-boson model. The spin-boson model consists of a single two-level system coupled to bosonic modes. In most cases, the model is considered in a limit where the bosonic modes are sufficiently dense to form a continuous spectral bath. A very well known case is the ohmic bath, where the density of states grows linearly with the frequency. In the limit of weak coupling or large temperature, this problem can be solved numerically. If the coupling is strong, the bosonic modes can become sufficiently excited to make a classical simulation impossible. Here, we discuss how a quantum simulation of this problem can be performed …

CouplingPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityFOS: Physical sciencesQuantum simulator01 natural sciences010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)ResonatorCircuit quantum electrodynamicsQuantum mechanicsQubitQuantum electrodynamicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesDensity of statesQuantum Physics (quant-ph)010306 general physicsBosonSpin-½
researchProduct

An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts

2017

We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50$\,\mathrm{m}\Omega \cdot \mu \mathrm{m}^2$ at a frequency of 4.5 GHz. Resonators for which only $6\%$ of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic …

Josephson effectMaterials scienceFabricationPhysics and Astronomy (miscellaneous)Ion beamFOS: Physical scienceschemistry.chemical_element02 engineering and technology01 natural sciencesSuperconductivity (cond-mat.supr-con)Resonator0103 physical sciencesThin film010306 general physicsSuperconductivityQuantum PhysicsArgonbusiness.industryCondensed Matter - Superconductivity021001 nanoscience & nanotechnologychemistryOptoelectronicsQuantum Physics (quant-ph)0210 nano-technologybusinessLayer (electronics)Applied Physics Letters
researchProduct

Local Sensing with the Multi-Level AC Stark Effect

2018

Analyzing weak microwave signals in the GHz regime is a challenging task if the signal level is very low and the photon energy widely undefined. A superconducting qubit can detect signals in the low photon regime, but due to its discrete level structure, it is only sensitive to photons of certain energies. With a multi-level quantum system (qudit) in contrast, the unknown signal frequency and amplitude can be deduced from the higher level AC Stark shift. The measurement accuracy is given by the signal amplitude, its detuning from the discrete qudit energy level structure and the anharmonicity. We demonstrate an energy sensitivity in the order of $10^{-3}$ with a measurement range of more th…

PhysicsQuantum PhysicsPhotonCondensed Matter - SuperconductivityOrder (ring theory)FOS: Physical sciences02 engineering and technologyTransmonPhoton energy021001 nanoscience & nanotechnology01 natural sciencesSuperconductivity (cond-mat.supr-con)symbols.namesakeStark effectQubit0103 physical sciencessymbolsSensitivity (control systems)Atomic physics010306 general physics0210 nano-technologyQuantum Physics (quant-ph)Energy (signal processing)
researchProduct