6533b859fe1ef96bd12b76e8
RESEARCH PRODUCT
Quantum simulation of the spin-boson model with a microwave circuit
Jochen BraumüllerJan-michael ReinerLukas FritzMelanie HauckMartin WeidesMartin WeidesSebastian ZankerMichael MarthalerMichael MarthalerJuha LeppäkangasIris SchwenkAlexey V. UstinovAlexey V. Ustinovsubject
CouplingPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityFOS: Physical sciencesQuantum simulator01 natural sciences010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)ResonatorCircuit quantum electrodynamicsQuantum mechanicsQubitQuantum electrodynamicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesDensity of statesQuantum Physics (quant-ph)010306 general physicsBosonSpin-½description
We consider superconducting circuits for the purpose of simulating the spin-boson model. The spin-boson model consists of a single two-level system coupled to bosonic modes. In most cases, the model is considered in a limit where the bosonic modes are sufficiently dense to form a continuous spectral bath. A very well known case is the ohmic bath, where the density of states grows linearly with the frequency. In the limit of weak coupling or large temperature, this problem can be solved numerically. If the coupling is strong, the bosonic modes can become sufficiently excited to make a classical simulation impossible. Here, we discuss how a quantum simulation of this problem can be performed by coupling a superconducting qubit to a set of microwave resonators. We demonstrate a possible implementation of a continuous spectral bath with individual bath resonators coupling strongly to the qubit. Applying a microwave drive scheme potentially allows us to access the strong-coupling regime of the spin-boson model. We discuss how the resulting spin relaxation dynamics with different initialization conditions can be probed by standard qubit-readout techniques from circuit quantum electrodynamics.
year | journal | country | edition | language |
---|---|---|---|---|
2017-11-20 |