0000000000143042

AUTHOR

Michael Marthaler

showing 6 related works from this author

Analog quantum simulation of the Rabi model in the ultra-strong coupling regime

2017

The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes–Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coup…

Quantum PhysicsPhysicsScienceComputerSystemsOrganization_MISCELLANEOUSQFOS: Physical sciencesddc:530lcsh:QQuantum Physicslcsh:ScienceQuantum Physics (quant-ph)Article
researchProduct

Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment

2015

We present a planar qubit design based on a superconducting circuit that we call concentric transmon. While employing a straightforward fabrication process using Al evaporation and lift-off lithography, we observe qubit lifetimes and coherence times in the order of 10us. We systematically characterize loss channels such as incoherent dielectric loss, Purcell decay and radiative losses. The implementation of a gradiometric SQUID loop allows for a fast tuning of the qubit transition frequency and therefore for full tomographic control of the quantum circuit. Due to the large loop size, the presented qubit architecture features a strongly increased magnetic dipole moment as compared to convent…

SuperconductivityPhysicsQuantum PhysicsPhysics and Astronomy (miscellaneous)Magnetic momentCondensed Matter - SuperconductivityFOS: Physical sciencesQuantum simulator02 engineering and technologyTransmon021001 nanoscience & nanotechnology01 natural sciences3. Good healthSuperconductivity (cond-mat.supr-con)Quantum circuitComputer Science::Emerging TechnologiesPlanarQuantum electrodynamicsQubit0103 physical sciencesQuantum Physics (quant-ph)010306 general physics0210 nano-technologyCoherence (physics)Applied Physics Letters
researchProduct

Emulating the one-dimensional Fermi-Hubbard model by a double chain of qubits

2016

The Jordan-Wigner transformation maps a one-dimensional spin-1/2 system onto a fermionic model without spin degree of freedom. A double chain of quantum bits with XX and ZZ couplings of neighboring qubits along and between the chains, respectively, can be mapped on a spin-full 1D Fermi-Hubbard model. The qubit system can thus be used to emulate the quantum properties of this model. We analyze physical implementations of such analog quantum simulators, including one based on transmon qubits, where the ZZ interaction arises due to an inductive coupling and the XX interaction due to a capacitive interaction. We propose protocols to gain confidence in the results of the simulation through measu…

PhysicsQuantum PhysicsHubbard modelCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityQuantum simulatorFOS: Physical sciences02 engineering and technologyTransmon021001 nanoscience & nanotechnology01 natural sciencesInductive couplingSuperconductivity (cond-mat.supr-con)Quantum mechanicsQubit0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physics0210 nano-technologySuperconducting quantum computingQuantum Physics (quant-ph)QuantumSpin-½
researchProduct

Quantum simulation of the spin-boson model with a microwave circuit

2017

We consider superconducting circuits for the purpose of simulating the spin-boson model. The spin-boson model consists of a single two-level system coupled to bosonic modes. In most cases, the model is considered in a limit where the bosonic modes are sufficiently dense to form a continuous spectral bath. A very well known case is the ohmic bath, where the density of states grows linearly with the frequency. In the limit of weak coupling or large temperature, this problem can be solved numerically. If the coupling is strong, the bosonic modes can become sufficiently excited to make a classical simulation impossible. Here, we discuss how a quantum simulation of this problem can be performed …

CouplingPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityFOS: Physical sciencesQuantum simulator01 natural sciences010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)ResonatorCircuit quantum electrodynamicsQuantum mechanicsQubitQuantum electrodynamicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesDensity of statesQuantum Physics (quant-ph)010306 general physicsBosonSpin-½
researchProduct

Local Sensing with the Multi-Level AC Stark Effect

2018

Analyzing weak microwave signals in the GHz regime is a challenging task if the signal level is very low and the photon energy widely undefined. A superconducting qubit can detect signals in the low photon regime, but due to its discrete level structure, it is only sensitive to photons of certain energies. With a multi-level quantum system (qudit) in contrast, the unknown signal frequency and amplitude can be deduced from the higher level AC Stark shift. The measurement accuracy is given by the signal amplitude, its detuning from the discrete qudit energy level structure and the anharmonicity. We demonstrate an energy sensitivity in the order of $10^{-3}$ with a measurement range of more th…

PhysicsQuantum PhysicsPhotonCondensed Matter - SuperconductivityOrder (ring theory)FOS: Physical sciences02 engineering and technologyTransmonPhoton energy021001 nanoscience & nanotechnology01 natural sciencesSuperconductivity (cond-mat.supr-con)symbols.namesakeStark effectQubit0103 physical sciencessymbolsSensitivity (control systems)Atomic physics010306 general physics0210 nano-technologyQuantum Physics (quant-ph)Energy (signal processing)
researchProduct

Erratum: “Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment” [Appl. Phys. Lett. 108, 032601 (2016)]

2018

010302 applied physicsPhysicsPhysics and Astronomy (miscellaneous)Magnetic momentCondensed matter physics02 engineering and technologyTransmonConcentric021001 nanoscience & nanotechnology01 natural sciencesMagnetic anisotropyQubit0103 physical sciences0210 nano-technologyAnisotropyQuantum computerApplied Physics Letters
researchProduct