0000000000143051

AUTHOR

J. Dobaczewski

Precision measurement of the magnetic octupole moment in 45Sc as a test for state-of-the-art atomic- and nuclear-structure theory

We report on measurements of the hyperfine $A, B$ and $C$-constants of the $3d4s^2 ~^2D_{5/2}$ and $3d4s^2 ~^2D_{3/2}$ atomic states in $^{45}$Sc. High-precision atomic calculations of the hyperfine fields of these states and second-order corrections are performed, and are used to extract $C_{5/2}=-0.06(6)$ kHz and $C_{3/2}=+0.04(3)$ kHz from the data. These results are one order of magnitude more precise than the available literature. From the combined analysis of both atomic states, we infer the nuclear magnetic octupole moment $\Omega = -0.07(53) \mu_N b$, including experimental and atomic structure-related uncertainties. With a single valence proton outside of a magic calcium core, scan…

research product

Global lifetime measurements of highly-deformed and other rotational structures in the a ∼135 light rare-earth region: probing the single-particle motion in a rotating potential

It has been possible, using GAMMASPHERE plus Microball,to extract differential lifetime measurements free from common systematic errors for over 15 different nuclei (various isotopes of Ce, Pr, Nd, Pm, and Sm) at high spin within a single experiment. This comprehensive study establishes the effective single-particle quadrupole moments in the A~135 light rare-earth region. Detailed comparisons are made with calculations using the self-consistent cranked mean-field theory.

research product

Rotational properties of nuclei around $^{254}$No investigated using a spectroscopic-quality Skyrme energy density functional

Nuclei in the $Z\approx100$ mass region represent the heaviest systems where detailed spectroscopic information is experimentally available. Although microscopic-macroscopic and self-consistent models have achieved great success in describing the data in this mass region, a fully satisfying precise theoretical description is still missing. By using fine-tuned parametrizations of the energy density functionals, the present work aims at an improved description of the single-particle properties and rotational bands in the nobelium region. Such locally optimized parameterizations may have better properties when extrapolating towards the superheavy region. Skyrme-Hartree-Fock-Bogolyubov and Lipk…

research product

Isospin mixing within the multi-reference nuclear density functional theory and beyond - selected aspects

The results of systematic calculations of isospin-symmetry-breaking corrections to superallowed beta-decays based on the self-consistent isospin- and angular-momentum-projected nuclear density functional theory (DFT) are reviewed with an emphasis on theoretical uncertainties of the model. Extensions of the formalism towards no core shell model approach with basis cutoff scheme dictated by the self-consistent particle-hole DFT solutions will be also discussed.

research product

Nuclear DFT electromagnetic moments in heavy deformed open-shell odd nuclei

Within the nuclear DFT approach, we determined the magnetic dipole and electric quadrupole moments for paired nuclear states corresponding to the proton (neutron) quasiparticles blocked in the p11/2- (n13/2+) intruder configurations. We performed calculations for all deformed open-shell odd nuclei with 63<=Z<=82 and 82<=N<=126. Time-reversal symmetry was broken in the intrinsic reference frame and self-consistent shape and spin core polarizations were established. We determined spectroscopic moments of angular-momentum-projected wave functions and compared them with available experimental data. We obtained good agreement with data without using effective g-factors or effective c…

research product

FINITE-RANGE SEPARABLE PAIRING INTERACTION WITHIN NEW N[sup 3]LO DFT APPROACH

For over four decades, the Skyrme functional within various parametrizations has been used to calculate nuclear properties. In the last few years there was a number of attempts to improve its performance and introduce generalized forms. In particular, the most general phenomenologi‐cal quasi‐local energy density functional, which contains all combinations of density, spin‐density, and their derivatives up to the sixth order (N3LO), was proposed in reference [1]. Since in the phe‐nomenological functional approaches the particle‐particle (pp) interaction channel is treated independently from the particle‐hole (ph) channel, there remains a question of what pairing interaction is suitable to us…

research product

Isospin mixing in nuclei around N=Z and the superallowed beta-decay

Theoretical approaches that use one-body densities as dynamical variables, such as Hartree-Fock or the density functional theory (DFT), break isospin symmetry both explicitly, by virtue of charge-dependent interactions, and spontaneously. To restore the spontaneously broken isospin symmetry, we implemented the isospin-projection scheme on top of the Skyrme-DFT approach. This development allows for consistent treatment of isospin mixing in both ground and exited nuclear states. In this study, we apply this method to evaluate the isospin impurities in ground states of even-even and odd-odd N~Z nuclei. By including simultaneous isospin and angular-momentum projection, we compute the isospin-br…

research product

Polarization corrections to single-particle energies studied within the energy-density-functional and QRPA approaches

Background: Models based on using perturbative polarization corrections and mean-field blocking approximation give conflicting results for masses of odd nuclei. Purpose: Systematically investigate the polarization and mean-field models, implemented within self-consistent approaches that use identical interactions and model spaces, so as to find reasons for the conflicts between them. Methods: For density-dependent interactions and with pairing correlations included, we derive and study links between the mean-field and polarization results obtained for energies of odd nuclei. We also identify and discuss differences between the polarization-correction and full particle-vibration-coupling (PV…

research product

Search for fingerprints of tetrahedral symmetry in 156gd

Theoretical predictions suggest the presence of tetrahedral symmetry as an explanation for the vanishing intra-band E2 transitions at the bottom of the odd-spin negative-parity band in 156Gd. The present study reports on experiment performed to address this phenomenon. It allowed to remove certain ambiguouities related to the intra-band E2 transitions in the negative-parity bands, to determine the new inter-band transitions and reduced probability ratios B(E2)/B(E1) and, for the first time, to determine the experimental uncertainties related to the latter observable. peerReviewed

research product

Search for Fingerprints of Tetrahedral Symmetry in $^{156}Gd$

Theoretical predictions suggest the presence of tetrahedral symmetry as an explanation for the vanishing intra-band E2-transitions at the bottom of the odd-spin negative parity band in $^{156}Gd$. The present study reports on experiment performed to address this phenomenon. It allowed to determine the intra-band E2 transitions and branching ratios B(E2)/B(E1) of two of the negative-parity bands in $^{156}Gd$.

research product

Nuclear moments of indium isotopes reveal abrupt change at magic number 82

In spite of the high-density and strongly correlated nature of the atomic nucleus, experimental and theoretical evidence suggests that around particular 'magic' numbers of nucleons, nuclear properties are governed by a single unpaired nucleon1,2. A microscopic understanding of the extent of this behaviour and its evolution in neutron-rich nuclei remains an open question in nuclear physics3-5. The indium isotopes are considered a textbook example of this phenomenon6, in which the constancy of their electromagnetic properties indicated that a single unpaired proton hole can provide the identity of a complex many-nucleon system6,7. Here we present precision laser spectroscopy measurements perf…

research product