0000000000143084

AUTHOR

Leonid A. Kurdachenko

0000-0002-6368-7319

showing 3 related works from this author

On periodic radical groups in which permutability is a transitive relation

2007

Abstract A group G is said to be a PT - group if permutability is a transitive relation in the set of all subgroups of G . Our purpose in this paper is to study PT -groups in the class of periodic radical groups satisfying min- p for all primes p .

CombinatoricsSet (abstract data type)Class (set theory)Transitive relationAlgebra and Number TheoryGroup (mathematics)MathematicsJournal of Pure and Applied Algebra
researchProduct

Extension of a Schur theorem to groups with a central factor with a bounded section rank

2013

Abstract A well-known result reported by Schur states that the derived subgroup of a group is finite provided its central factor is finite. Here we show that if the p-section rank of the central factor of a locally generalized radical group is bounded, then so is the p-section rank of its derived subgroup. We also give an explicit expression for this bound.

CombinatoricsMultiplier (Fourier analysis)Algebra and Number TheoryBounded functionSchur's lemmaCommutator subgroupFocal subgroup theoremRank of an abelian groupSchur's theoremSchur multiplierMathematicsJournal of Algebra
researchProduct

A note on Sylow permutable subgroups of infinite groups

2014

Abstract A subgroup A of a periodic group G is said to be Sylow permutable, or S-permutable, subgroup of G if A P = P A for all Sylow subgroups P of G. The aim of this paper is to establish the local nilpotency of the section A G / Core G ( A ) for an S-permutable subgroup A of a locally finite group G.

p-groupNormal subgroupCombinatoricsMathematics::Group TheoryNormal p-complementComplement (group theory)Mathematics::CombinatoricsAlgebra and Number TheorySubgroupLocally finite groupSylow theoremsIndex of a subgroupMathematicsJournal of Algebra
researchProduct