0000000000143132
AUTHOR
H. Benthien
Spectral Function of the One-Dimensional Hubbard Model away from Half Filling
We calculate the photoemission spectral function of the one-dimensional Hubbard model away from half filling using the dynamical density matrix renormalization group method. An approach for calculating momentum-dependent quantities in finite open chains is presented. Comparison with exact Bethe Ansatz results demonstrates the unprecedented accuracy of our method. Our results show that the photoemission spectrum of the quasi-one-dimensional conductor TTF-TCNQ provides evidence for spin-charge separation on the scale of the conduction band width.
Electronic structure of the spin-12quantum magnet TiOCl
We have studied the electronic structure of the spin-$1∕2$ quantum magnet TiOCl by polarization-dependent momentum-resolved photoelectron spectroscopy. From that, we confirm the quasi-one-dimensional nature of the electronic structure along the crystallographic $b$ axis and find no evidence for sizable phonon-induced orbital fluctuations as the origin for the noncanonical phenomenology of the spin-Peierls transition in this compound. A comparison of the experimental data to our own $\mathrm{LDA}+\mathrm{U}$ and Hubbard model calculations reveals a striking lack of understanding regarding the quasi-one-dimensional electron dispersions in the normal state of this compound.