0000000000143482

AUTHOR

Charlotte Poe

showing 6 related works from this author

Autosomal recessive variations of TBX6 , from congenital scoliosis to spondylocostal dysostosis

2017

International audience; Proximal 16p11.2 microdeletions are recurrent microdeletions with an overall prevalence of 0.03%. In patients with segmentation defects of the vertebra (SDV), a burden of this microdeletion was observed with TBX6 as a candidate gene for SDV. In a published cohort of patients with congenital scoliosis (CS), TBX6 haploinsufficiency was compound heterozygous with a common haplotype. Besides, a single three-generation family with spondylocostal dysostosis (SCD) was reported with a heterozygous stop-loss of TBX6. These observations questioned both on the inheritance mode and on the variable expressivity associated with TBX6-associated SDV. Based on a national recruitment …

0301 basic medicineMalePediatricsmedicine.medical_specialtyCandidate geneGenotypeScoliosis030105 genetics & heredityCompound heterozygosity03 medical and health sciences[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineInheritance ModeMissense mutationHumansAbnormalities MultipleGenetic Predisposition to DiseaseChildGenetics (clinical)GeneticsHernia Diaphragmaticbusiness.industryHaplotypeInfantmedicine.diseaseSpondylocostal dysostosisSpine3. Good healthPedigree030104 developmental biologyHaplotypesScoliosisChild PreschoolMutationFemalebusinessHaploinsufficiencyT-Box Domain Proteins[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Excess of de novo variants in genes involved in chromatin remodelling in patients with marfanoid habitus and intellectual disability.

2020

PurposeMarfanoid habitus (MH) combined with intellectual disability (ID) (MHID) is a clinically and genetically heterogeneous presentation. The combination of array CGH and targeted sequencing of genes responsible for Marfan or Lujan–Fryns syndrome explain no more than 20% of subjects.MethodsTo further decipher the genetic basis of MHID, we performed exome sequencing on a combination of trio-based (33 subjects) or single probands (31 subjects), of which 61 were sporadic.ResultsWe identified eight genes with de novo variants (DNVs) in at least two unrelated individuals (ARID1B, ATP1A1, DLG4, EHMT1, NFIX, NSD1, NUP205 and ZEB2). Using simulation models, we showed that five genes (DLG4, NFIX, …

ProbandMale[SDV]Life Sciences [q-bio]intellectual deficiencyMESH: NFI Transcription Factorschromatin remodelingMarfan SyndromeCraniofacial AbnormalitiesMESH: ChildIntellectual disabilityMESH: Craniofacial AbnormalitiesMESH: Mental Retardation X-LinkedExomeChildde novo variantsGenetics (clinical)Exome sequencingGeneticsMESH: ExomeMESH: Middle AgedbiologyMESH: Genetic Predisposition to DiseaseMiddle AgedNFIXMESH: Young AdultFemaleAdultMESH: MutationAdolescentChromatin remodelingMESH: Intellectual DisabilityMESH: Marfan SyndromeEHMT1Young AdultMESH: Whole Exome SequencingIntellectual DisabilityExome SequencingGeneticsmedicineHumansGenetic Predisposition to Diseasemarfanoid habitusGeneMESH: Neurodevelopmental DisordersMESH: AdolescentMESH: HumansGenetic heterogeneityMESH: Chromatin Assembly and DisassemblyMESH: Histone-Lysine N-MethyltransferaseMESH: AdultHistone-Lysine N-Methyltransferasemedicine.diseaseChromatin Assembly and DisassemblyMESH: MaleNFI Transcription FactorsNeurodevelopmental DisordersMutationbiology.proteinMental Retardation X-LinkedMESH: FemaleJournal of medical genetics
researchProduct

Clinical whole-exome sequencing for the diagnosis of rare disorders with congenital anomalies and/or intellectual disability: substantial interest of…

2017

International audience; PurposeCongenital anomalies and intellectual disability (CA/ID) are a major diagnostic challenge in medical genetics—50% of patients still have no molecular diagnosis after a long and stressful diagnostic “odyssey.” Solo clinical whole-exome sequencing (WES) was applied in our genetics center to improve diagnosis in patients with CA/ID.MethodsThis retrospective study examined 416 consecutive tests performed over 3 years to demonstrate the effectiveness of periodically reanalyzing WES data. The raw data from each nonpositive test was reanalyzed at 12 months with the most recent pipeline and in the light of new data in the literature. The results of the reanalysis for …

0301 basic medicinemedicine.medical_specialtyPediatricsCongenital anomaliesIntellectual disabilityTranslational researchClinical WES dataCongenital Abnormalities03 medical and health sciencesRare DiseasesIntellectual disabilityDatabases GeneticExome SequencingmedicineHumansExomeGenetic Testing[ SDV.GEN.GH ] Life Sciences [q-bio]/Genetics/Human geneticsExomeGenetics (clinical)Exome sequencingGenetic testingRetrospective Studiesmedicine.diagnostic_testbusiness.industryHigh-Throughput Nucleotide SequencingRetrospective cohort studySequence Analysis DNAmedicine.diseaseAdditional research3. Good health030104 developmental biology[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsWhole-exome sequencingPhysical therapyRaw databusiness
researchProduct

Interest of exome sequencing trio-like strategy based on pooled parental DNA for diagnosis and translational research in rare diseases.

2021

Abstract Background Exome sequencing (ES) has become the most powerful and cost‐effective molecular tool for deciphering rare diseases with a diagnostic yield approaching 30%–40% in solo‐ES and 50% in trio‐ES. We applied an innovative parental DNA pooling method to reduce the parental sequencing cost while maintaining the diagnostic yield of trio‐ES. Methods We pooled six (Agilent‐CRE‐v2–100X) or five parental DNA (TWIST‐HCE–70X) aiming to detect allelic balance around 8–10% for heterozygous status. The strategies were applied as second‐tier (74 individuals after negative solo‐ES) and first‐tier approaches (324 individuals without previous ES). Results The allelic balance of parental‐pool v…

Genetic MarkersCost effectivenessTranslational researchBiologyQH426-470Sensitivity and SpecificityWorkflowTranslational Research Biomedicalchemistry.chemical_compoundsymbols.namesakeExome SequencingFalse positive paradoxGeneticsHumansDna poolingGenetic Predisposition to DiseaseGenetic TestingAlleleMolecular BiologyGenetics (clinical)Exome sequencingtrio‐like strategy; parental‐pool strategyGeneticsSanger sequencingcost effectivenessReproducibility of Resultsrare diseasesSequence Analysis DNAOriginal ArticleschemistryResearch DesignsymbolsOriginal ArticleDNAGenome-Wide Association StudyMolecular geneticsgenomic medicine
researchProduct

Extending the ALDH18A1 clinical spectrum to severe autosomal recessive fetal cutis laxa with corpus callosum agenesis

2018

IF 3.822 (2018); International audience

0301 basic medicinePathologymedicine.medical_specialtyFetusALDH18A1Corpus Callosum Agenesisbusiness.industryGenes RecessiveAldehyde Dehydrogenase030105 genetics & hereditymedicine.diseaseMagnetic Resonance ImagingCutis Laxa03 medical and health sciencesFetus[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsGeneticsmedicineHumansAgenesis of Corpus CallosumbusinessAllelesGenetics (clinical)Cutis laxa
researchProduct

Reducing diagnostic turnaround times of exome sequencing for families requiring timely diagnoses

2017

IF 2.137; International audience; BACKGROUND AND OBJECTIVE:Whole-exome sequencing (WES) has now entered medical practice with powerful applications in the diagnosis of rare Mendelian disorders. Although the usefulness and cost-effectiveness of WES have been widely demonstrated, it is essential to reduce the diagnostic turnaround time to make WES a first-line procedure. Since 2011, the automation of laboratory procedures and advances in sequencing chemistry have made it possible to carry out diagnostic whole genome sequencing from the blood sample to molecular diagnosis of suspected genetic disorders within 50 h. Taking advantage of these advances, the main objective of the study was to impr…

0301 basic medicineAdultMaleExome sequencingmedicine.medical_specialtyTime FactorsAdolescentGenetic counselingBioinformaticsTurnaround timeSensitivity and SpecificityUndiagnosed genetic conditions03 medical and health sciencesGeneticsmedicineHumansExomeGenetic TestingMedical diagnosisIntensive care medicineChildExomeGenetics (clinical)Exome sequencingGenetic testingWhole genome sequencing[SDV.GEN]Life Sciences [q-bio]/Geneticsmedicine.diagnostic_testbusiness.industryInfant NewbornInfantGeneral MedicineSequence Analysis DNADiagnostic turnaround time3. Good healthClinical trial030104 developmental biologyEarly DiagnosisChild PreschoolFemalebusiness[ SDV.GEN ] Life Sciences [q-bio]/Genetics
researchProduct