Electron Spin Resonance study of charge trapping in α-ZnMoO4 single crystal scintillator
The origin and properties of electron and hole traps simultaneously appearing in a-ZnMoO4 scintillator after X-ray irradiation at low temperatures (T < 35 K) were studied by Electron Spin Resonance (ESR). ESR spectrum of the electron type trap shows pronounced superhyperfine structure due to the interaction of electron spin with nuclear magnetic moments of 95,97Mo and 67Zn lattice nuclei. Considering the nearly tetragonal symmetry of the center this allows us to identify the electron trap as an electron self-trapped at the (Mo(1)O4) 2 complex. Nearly 60% reduction of the spin–orbit coupling at the Mo(1) ion is caused by the overlap of the Mo and ligand oxygen orbitals indicating an essentia…
Study of the defects in La3Ta0.5Ga5.5O14 single crystals
Abstract Defects that are formed during crystal growth pose a serious obstacle for potential application of La 3 Ga 5.5 Ta 0.5 O 14 (LGT) as a laser or piezoelectric crystal. We have performed the study of the defects origin in LGT crystals grown in different atmospheres using optical, EPR and time-resolved luminescence characterization methods. The absorption bands detected in the transparency region at 290, 360 and 490 nm ( T =300 K) demonstrate different dependence on crystal annealing in vacuum and air. EPR analysis demonstrated that the defects responsible for these bands are non-paramagnetic. X-ray irradiation results in hole trapping by oxygen ions thus forming O − centers perturbed …