0000000000144451
AUTHOR
Muneo Chō
Weyl's Theorems and Extensions of Bounded Linear Operators
A bounded operator $T\in L(X)$, $X$ a Banach space, is said to satisfy Weyl's theorem if the set of all spectral points that do not belong to the Weyl spectrum coincides with the set of all isolated points of the spectrum which are eigenvalues and having finite multiplicity. In this article we give sufficient conditions for which Weyl's theorem for an extension $\overline T$ of $T$ (respectively, for $T$) entails that Weyl's theorem holds for $T$ (respectively, for $\overline T$).
The perturbation classes problem for closed operators
We compare the perturbation classes for closed semi-Fredholm and Fredholm operators with dense domain acting between Banach spaces with the corresponding perturbation classes for bounded semi-Fredholm and Fredholm operators. We show that they coincide in some cases, but they are different in general. We describe several relevant examples and point out some open problems.