0000000000144515

AUTHOR

P. Geltenbort

showing 19 related works from this author

Search for an electric charge of the neutron

2018

The electrical neutrality of the neutron is linked to the electric charge quantization. It is not understood yet if the electric charge is quantized or not. Since the discovery of the neutron, many attempts have been made to measure its electric charge ${q}_{n}$ directly and indirectly. We present a method to search for a possible ${q}_{n}$ by means of an optical setup using ultracold neutrons. In a first run, a statistical sensitivity of $\ensuremath{\delta}{q}_{n}=2.4\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}20}\text{ }\text{ }e/\sqrt{\mathrm{day}}$ is achieved. Possible improvements to increase this sensitivity down to $\ensuremath{\delta}{q}_{n}\ensuremath{\approx}1\ifmmode\…

PhysicsMeasurement methodpotential: electrostatic010308 nuclear & particles physicscharge: electricStatistical sensitivitymeasurement methodssensitivity01 natural sciencesElectric chargeelectric fieldcharge: quantizationn: energy eigenstateElectric field0103 physical sciencesoptical[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronSensitivity (control systems)Atomic physics010306 general physicsmirrorstatisticalexperimental resultsn: charge: upper limit
researchProduct

New constraints on Lorentz invariance violation from the neutron electric dipole moment

2010

We propose an original test of Lorentz invariance in the interaction between a particle spin and an electromagnetic field and report on a first measurement using ultracold neutrons. We used a high sensitivity neutron electric dipole moment (nEDM) spectrometer and searched for a direction dependence of a nEDM signal leading to a modulation of its magnitude at periods of 12 and 24 hours. We constrain such a modulation to $d_{12} < 15 \times 10^{-25} \ e\,{\rm cm}$ and $d_{24} < 10 \times 10^{-25} \ e\,{\rm cm}$ at 95~\% C.L. The result translates into a limit on the energy scale for this type of Lorentz violation effect at the level of ${\cal E}_{LV} > 10^{10}$~GeV.

Electromagnetic fieldPhysicsSpectrometerNeutron electric dipole moment010308 nuclear & particles physicsFOS: Physical sciencesGeneral Physics and AstronomyLorentz covariance[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesSignalModulationQuantum electrodynamics0103 physical sciencesUltracold neutronsSensitivity (control systems)Nuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear Experiment
researchProduct

First observation of trapped high-field seeking ultracold neutron spin states

2011

Ultracold neutrons were stored in a volume, using a magnetic dipole field shutter. Radial confinement was provided by material walls. Low-field seeking neutrons were axially confined above the magnetic field. High-field seeking neutrons are trapped inside the magnetic field. They can systematically shift the measured neutron lifetime to lower values in experiments with magnetic confinement. ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445

PhysicsNeutron lifetimeNuclear and High Energy PhysicsSpin statesCondensed matter physicsUltracold neutron storage010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaNuclear TheoryMagnetic confinement fusionUltracold neutrons; Ultracold neutron storage; Neutron lifetime[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences3. Good healthMagnetic fieldShutter0103 physical sciencesUltracold neutronsNeutron010306 general physicsAxial symmetryNuclear ExperimentUltracold neutronsMagnetic dipolePhysics Letters B
researchProduct

Measurement of the permanent electric dipole moment of the neutron

2020

We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey’s method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a 199Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magne…

Physics - Instrumentation and DetectorsMagnetometerFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesMeasure (mathematics)S017EDMlaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)statistical analysislawcesium0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]time reversal: invarianceStatistical analysisNeutronNuclear Physics - ExperimentPhysics::Atomic Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniques010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsn: electric momentInstrumentation and Detectors (physics.ins-det)Cesium vaporMagnetic fieldElectric dipole moment* Automatic Keywords *Ultracold neutronsElementary Particles and FieldshistoryAtomic physicstime reversal: violationmagnetic field: oscillationParticle Physics - Experiment
researchProduct

Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields

2009

We performed ultracold neutron (UCN) storage measurements to search for additional losses due to neutron (n) to mirror-neutron (n') oscillations as a function of an applied magnetic field B. In the presence of a mirror magnetic field B', UCN losses would be maximal for B = B'. We did not observe any indication for nn' oscillations and placed a lower limit on the oscillation time of tau_{nn'} > 12.0 s at 95% C.L. for any B' between 0 and 12.5 uT.

PhysicsNuclear and High Energy PhysicsAntiparticle010308 nuclear & particles physicsOscillationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesHardware_PERFORMANCEANDRELIABILITYFermion[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences3. Good healthMagnetic fieldNuclear physicsTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYAntimatter0103 physical sciencesUltracold neutronsNeutronNuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentNuclear Experiment
researchProduct

Transmission of very slow neutrons through material foils and its influence on the design of ultracold neutron sources

2009

At the Paul Scherrer Institute (PSI), a very intense source of ultracold neutrons (UCN) is being built. The UCN converter of solid deuterium must be contained in a vessel. Produced UCN leave that vessel through its top lid. To decide on the design of the vessel and the top lid, we have measured the transmission of neutrons with velocities between 3 and 20 m/s through different material foils. Contrary to expectations, we found that transmission through aluminium and aluminium alloys is equal or even higher compared to zirconium and reactor-grade zirconium alloys, respectively.

PhysicsNuclear and High Energy PhysicsZirconiumZirconium alloychemistry.chemical_elementNuclear physicsTransmission (telecommunications)chemistryDeuteriumAluminiumUltracold neutronsNeutron sourceNeutronInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Magnetic field uniformity in neutron electric dipole moment experiments

2019

© 2019 American Physical Society. Magnetic-field uniformity is of the utmost importance in experiments to measure the electric dipole moment of the neutron. A general parametrization of the magnetic field in terms of harmonic polynomial modes is proposed, going beyond the linear-gradients approximation. We review the main undesirable effects of nonuniformities: depolarization of ultracold neutrons and Larmor frequency shifts of neutrons and mercury atoms. The theoretical predictions for these effects were verified by dedicated measurements with the single-chamber neutron electric-dipole-moment apparatus installed at the Paul Scherrer Institute. ispartof: Physical Review A vol:99 issue:4 sta…

Physics - Instrumentation and DetectorsNeutron electric dipole momentmercury: atommeasurement methodsFOS: Physical sciencesHarmonic polynomial01 natural sciences7. Clean energyHigh Energy Physics - Experiment010305 fluids & plasmasHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronPhysics::Atomic Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentFundamental conceptsQCPhysicsLarmor precessionMeasurement methodn: electric momentn: depolarizationmathematical methodsInstrumentation and Detectors (physics.ins-det)Magnetic fieldComputational physicsElectric dipole momentmagnetic field: parametrizationUltracold neutrons
researchProduct

Gravitational depolarization of ultracold neutrons : comparison with data

2015

We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsField (physics)FOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsGravitationHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronDetectors and Experimental Techniques010306 general physicsQCLarmor precessionPhysics010308 nuclear & particles physics1420DhDepolarizationInstrumentation and Detectors (physics.ins-det)Magnetic field gradient1130Ernumbers: 1340Em0755GeElectric dipole momentPhysics::Space PhysicsUltracold neutronsAtomic physics
researchProduct

Absorber materials for low-energy neutrons—Theoretical and experimental studies

2012

Abstract Absorber materials for low-energy neutrons are studied in the theoretical framework of quantum mechanics with a complex potential. Analytical expressions and numerical calculations of the neutron reflectivity for perpendicular and isotropic motion towards a surface for four different material classes are presented. Comparative experimental studies of four absorber materials have been carried out: Polyethylene, titanium, boron-10 and lithium stearate. In a quasi-storage experiment with ultracold neutrons the latter material features the highest absorption property.

PhysicsNuclear and High Energy PhysicsLithium stearatebusiness.industryNeutron scatteringNeutron temperaturechemistry.chemical_compoundNeutron captureOpticschemistryUltracold neutronsNeutron detectionNeutronAtomic physicsAbsorption (electromagnetic radiation)businessInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

An optical device for ultra-cold neutrons - Investigation of systematic effects and applications

2010

We developed an optical device for ultra-cold neutrons and investigated the influence of a tilt of its guiding components. A measurement of the time-of-flight of the neutrons through the device by means of a dedicated chopper system was performed and a light-optical method for the alignment of the guiding components is demonstrated. A comparative analysis of former experiments with our results shows the potential of such a device to test the electrical neutrality of the free neutron on the $10^{-22} q_{\rm e}$ level and to investigate the interaction of neutrons with gravity.

PhysicsNuclear and High Energy PhysicsGravity (chemistry)Physics - Instrumentation and Detectorsbusiness.industryFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)ChopperNuclear physicsOpticsTilt (optics)Neutron detectionNeutronbusinessInstrumentation
researchProduct

QUATERNARY FISSION

2003

Quaternary fission is a nuclear reaction where the two customary fragments from fission are accompanied by two light charged particles. The process has been investigated at the ILL, Grenoble, for thermal neutron induced fission of 233U and 235U. The light particles were identified to be α particles and H isotopes (mostly tritons). Two different types of processes could be disentangled: in one of these processes all four charged particles are born in coincidence while the second process is in fact merely a special case of ternary fission where the ternary particle decays into two charged particles before reaching the detectors.

Nuclear reactionPhysicsNuclear and High Energy PhysicsIsotopeFissionNuclear TheoryGeneral Physics and AstronomyNeutron temperatureCharged particleNuclear physicsParticleNuclear ExperimentTernary operationTernary fissionFission Dynamics of Atomic Clusters and Nuclei
researchProduct

Comparison of ultracold neutron sources for fundamental physics measurements

2016

Ultracold neutrons (UCNs) are key for precision studies of fundamental parameters of the neutron and in searches for new CP violating processes or exotic interactions beyond the Standard Model of particle physics. The most prominent example is the search for a permanent electric dipole moment of the neutron (nEDM). We have performed an experimental comparison of the leading UCN sources currently operating. We have used a 'standard' UCN storage bottle with a volume of 32 liters, comparable in size to nEDM experiments, which allows us to compare the UCN density available at a given beam port.

Physics - Instrumentation and DetectorsPhysics beyond the Standard ModelFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesNuclear physics25.40Fq0103 physical sciencesCP: violationNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)010306 general physicsNuclear Experiment[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear ExperimentPhysicsn: densityn: electric moment010308 nuclear & particles physics29.25.Dzn: particle sourceInstrumentation and Detectors (physics.ins-det)31.30.jn28.20.Pr3. Good healthFundamental physicsMoment (physics)14.20.DhUltracold neutronsNeutron sourceBeam (structure)
researchProduct

A measurement of the neutron to 199Hg magnetic moment ratio

2014

The neutron gyromagnetic ratio has been measured relative to that of the 199Hg atom with an uncertainty of 0.8 ppm. We employed an apparatus where ultracold neutrons and mercury atoms are stored in the same volume and report the result γn/γHg=3.8424574(30).

inorganic chemicalsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsNeutron magnetic momentAtomic Physics (physics.atom-ph)Astrophysics::High Energy Astrophysical PhenomenaGyromagnetic ratioFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesPhysics - Atomic PhysicsNuclear physicsMagnetic momentGyromagnetic ratio0103 physical sciencesAtomNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Physics::Atomic PhysicsNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsCondensed Matter::Quantum Gases[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Magnetic moment010308 nuclear & particles physicsProton magnetic momenttechnology industry and agricultureQC0793Instrumentation and Detectors (physics.ins-det)Ultracold neutrons; Mercury atoms; Magnetic moment; Gyromagnetic ratioQC0770lcsh:QC1-999Mercury atomsElectric dipole momentbiological sciencesUltracold neutronslipids (amino acids peptides and proteins)Astrophysics::Earth and Planetary AstrophysicsAtomic physicsUltracold neutronslcsh:PhysicsPhysics Letters B
researchProduct

Losses and depolarization of ultracold neutrons on neutron guide and storage materials

2017

At Institut Laue-Langevin (ILL) and Paul Scherrer Institute (PSI), we have measured the losses and depolarization probabilities of ultracold neutrons on various materials: (i) nickel-molybdenum alloys with weight percentages of 82/18, 85/15, 88/12, 91/9, and 94/6 and natural nickel Ni100, (ii) nickel-vanadium NiV93/7, (iii) copper, and (iv) deuterated polystyrene (dPS). For the different samples, storage-time constants up to $\ensuremath{\sim}460\phantom{\rule{0.16em}{0ex}}\mathrm{s}$ were obtained at room temperature. The corresponding loss parameters for ultracold neutrons, $\ensuremath{\eta}$, varied between $1.0\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ and $2.2\ifmmode\t…

Physics010308 nuclear & particles physicschemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsParamagnetismNickelFerromagnetismDeuteriumchemistry0103 physical sciencesContent (measure theory)Ultracold neutronsNeutronSensitivity (control systems)Atomic physics010306 general physics
researchProduct

Test of Lorentz invariance with spin precession of ultracold neutrons

2009

A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and $^{199}$Hg atoms is reported. %57 No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz invariance violating cosmic anisotropy field $b_{\bot} < 2 \times 10^{-20} {\rm eV}$ (95% C.L.). This is the first limit for the free neutron. This result is also interpreted as a direct limit on the gravitational dipole moment of the neutron $|g_n| < 0.3 $eV/$c^2$ m from a spin-dependent interaction with the Sun. Analyzing the gravitational interaction with the Earth, based on previous data, yields a more stringent limit $|g_n| < 3 \times …

Physics010308 nuclear & particles physicsGeneral Physics and AstronomyFOS: Physical sciencesElementary particleLorentz covariance[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyDipoleQuantum mechanics0103 physical sciencesPrecessionUltracold neutronsNeutronAtomic physicsNuclear Experiment (nucl-ex)010306 general physicsNucleonSpin (physics)Nuclear Experiment
researchProduct

Improved instrument for the determination of the neutron electric charge

2015

Abstract We present an improved instrument for the determination of the neutron electric charge with ultracold neutrons. Several technical upgrades with respect to a former experiment will be discussed in detail. As a first test, we applied the apparatus to investigate the influence of gravitational attraction by means of a massive block of lead. The calculated sensitivity for a charge measurement is δ q n ≈ 2.14 × 10 − 20 e / day . Planned modifications increasing the sensitivity up to δ q n ≈ 1.34 × 10 − 21 e / day are demonstrated.

PhysicsNuclear physicsGravitationNuclear and High Energy PhysicsUltracold neutronsNeutronCharge (physics)Atomic physicsBlock (periodic table)InstrumentationSensitivity (electronics)Electric chargeNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spalla…

2021

Abstract The violation of baryon number, B , is an essential ingredient for the preferential creation of matter over antimatter needed to account for the observed baryon asymmetry in the Universe. However, such a process has yet to be experimentally observed. The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source to search for baryon number violation. The program will include high-sensitivity searches for processes that violate baryon number by one or two units: free neutron–antineutron oscillation ( n → n ̄ ) via mixing, neutron–antineutron oscillation via regeneration from a sterile neutron state ( n → [ n ′ , n ̄ ′ ] → n ̄ ), and neutron disappearan…

baryon number violation; feebly interacting particles; European Spallation Source; baryogenesisPhysics beyond the Standard ModelNuclear TheoryEXPERIMENTAL LIMITfeebly interacting particlesbaryogenesisAntineutron01 natural sciencesSubatomär fysikANTIPROTON ANNIHILATIONn: oscillationSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentsterilePhysicsMIRROR MATTERnew physicsanti-nddc:Antimatterbaryon: asymmetryproposed experimentDAMA ANNUAL MODULATIONNuclear and High Energy PhysicsParticle physicsAccelerator Physics and Instrumentation114 Physical sciencesBaryon asymmetrynuclear physics0103 physical sciencesDARK-MATTERmixingNeutronSensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]TRANSITION OPERATORS010306 general physicsbaryon number: violationactivity report010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAcceleratorfysik och instrumenteringMAJORANA NEUTRINOSsensitivitybaryon number violationBaryogenesisregenerationEuropean Spallation SourceUNIFIED PICTUREB-L SYMMETRYBaryon numberBARYON-NUMBER NONCONSERVATION
researchProduct

A low-pass velocity filter for ultracold neutrons

2012

Abstract We have built a device to filter ultracold neutrons with axial velocities v n ≤ 8.0 m / s from faster neutrons. The apparatus has been successfully tested at the Institut Laue-Langevin in Grenoble and is used in specific experiments, e.g., the measurement of ultracold neutron transmission through various types of neutron guides.

Condensed Matter::Quantum GasesNuclear physicsPhysicsNuclear and High Energy PhysicsFilter (video)Astrophysics::High Energy Astrophysical PhenomenaLow-pass filterNuclear TheoryUltracold neutronsNeutronNeutron transmissionNuclear ExperimentInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields

2017

We report on a search for ultralow-mass axionlike dark matter by analyzing the ratio of the spinprecession frequencies of stored ultracold neutrons and 199Hg atoms for an axion-induced oscillating electric dipole moment of the neutron and an axion-wind spin-precession effect. No signal consistent with dark matter is observed for the axion mass range 10−24 ≤ ma ≤ 10−17 eV. Our null result sets the first laboratory constraints on the coupling of axion dark matter to gluons, which improve on astrophysical limits by up to 3 orders of magnitude, and also improves on previous laboratory constraints on the axion coupling to nucleons by up to a factor of 40. ispartof: Physical Review X vol:7 issue:…

axionsCosmology and Nongalactic Astrophysics (astro-ph.CO)[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear TheoryAtomic Physics (physics.atom-ph)Physics::Instrumentation and Detectors[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]QC1-999FOS: Physical sciencesmagnetic field[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]dark matterPhysics - Atomic PhysicsNuclear Theory (nucl-th)High Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph][ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]axion: couplingNuclear Experiment (nucl-ex)gluon: couplingNuclear Experiment[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]spin: precessionaxion: dark mattern: electric momentnucleus: spinatomPhysicsHigh Energy Physics::Phenomenologyspin precessionoscillation[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]neutron electric dipole momentelectric fieldHigh Energy Physics - PhenomenologyS029IAN[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]axion: mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]experimental resultsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review X
researchProduct