Gas-phase detection of HSOH: synthesis by flash vacuum pyrolysis of di-tert-butyl sulfoxide and rotational-torsional spectrum.
Gas-phase oxadisulfane (HSOH), the missing link between the well-known molecules hydrogen peroxide (HOOH) and disulfane (HSSH), was synthesized by flash vacuum pyrolysis of di-tert-butyl sulfoxide. Using mass spectrometry, the pyrolysis conditions have been optimized towards formation of HSOH. Microwave spectroscopic investigation of the pyrolysis products allowed-assisted by high-level quantum-chemical calculations--the first measurement of the rotational-torsional spectrum of HSOH. In total, we have measured approximately 600 lines of the rotational-torsional spectrum in the frequency range from 64 GHz to 1.9 THz and assigned some 470 of these to the rotational-torsional spectrum of HSOH …
Gas-phase detection of HSOD and empirical equilibrium structure of oxadisulfane
We present the first gas phase spectra of singly deuterated oxadisulfane, HSOD, in its vibrational ground state. More than 100 transitions have been recorded with highest frequency accuracy using the Cologne Terahertz Spectrometer. The molecular parameters derived from a least squares fit analysis proof HSOD to be an almost accidental symmetric prolate top molecule with an asymmetry parameter kZK0.9985. Spectra of c-type and weaker b-type transitions have been recorded in the range from 716 to 772 GHz. The ratio of the dipole moments mc/mbZ2.4(3) has been derived from measured line intensities. The c-type transitions are split by the tunneling motion of a hindered internal rotation, whereas…
Gas-phase detection of discharge-generated DSOD
Abstract We report the first spectroscopic detection of perdeuterated 1-oxadisulfane, DSOD, generated in a radio-frequency plasma of D2S and D2O. The chain molecule DSOD produces a perpendicular-type spectrum, with well-known spectral features encountered in previous studies of geometrically related molecules, such as compact Q-branches, which are clearly recognizable. The arrangement of the transitions shaping the Q-branches usually provides sufficient proof for a clear-cut detection of a chain molecule such as DSOD. Guided by quantum chemical calculations, we have located the band center of the r Q 2 -branch of DSOD in the frequency region near 466.5 GHz using the Cologne terahertz spectr…