0000000000144525
AUTHOR
S. Pous-torres
Origin and correction of the deviations in retention times at increasing flow rate with Chromolith columns.
Chromoliths can be used at flow rates beyond those feasible for conventional microparticulate packed columns. Ideally, the plots of the retention time versus the inverse of delivered flow rate should exhibit y-intercept of zero. However, significant positive deviations correlating with the solute polarity were observed for several compounds chromatographed with a Chromolith column, owing to the increased system pressure. Consequently, the dead time marker exhibits a smaller deviation, making the retention factors depend on the flow rate. Chromoliths are made of a silica-based monolith encapsulated within a PEEK tube, and should suffer larger stress with pressure than stainless steel columns…
Combined effect of solvent content, temperature and pH on the chromatographic behaviour of ionisable compounds. III: Considerations about robustness
Abstract We previously reported a model able to predict the retention time of ionisable compounds as a function of the solvent content, temperature and pH [J. Chromatogr. A 1163 (2007) 49]. The model was applied further, developing an optimisation of the resolution based on the peak purity concept [J. Chromatogr. A 1193 (2008) 117]. However, we left aside an important issue: we did not consider incidental overlaps caused by shifts in the predicted peak positions, owing either to uncertainties in the source data, modelling errors, or the practical implementation in the chromatograph of the optimal mobile phase (or any other). These shifts can ruin the predicted separation, since they can eas…
Performance of different C18 columns in reversed-phase liquid chromatography with hydro-organic and micellar-organic mobile phases
Column selection in reversed-phase liquid chromatography (RPLC) can become a challenge if the target compounds interact with the silica-based packing. One of such interactions is the attraction of cationic solutes to the free silanols in silica-based columns, which is a slow sorption-desorption interaction process that gives rise to tailed and broad peaks. The effect of silanols is minimised by the addition of a competing agent in the mobile phase, such as the anionic surfactant sodium dodecyl sulphate (SDS). In micellar-organic RPLC, the adsorption of an approximately fixed amount of SDS monomers gives rise to a stable modified stationary phase, with properties remarkably different from th…
Optimisation of chromatographic resolution using objective functions including both time and spectral information.
The optimisation of the resolution in high-performance liquid chromatography is traditionally performed attending only to the time information. However, even in the optimal conditions, some peak pairs may remain unresolved. Such incomplete resolution can be still accomplished by deconvolution, which can be carried out with more guarantees of success by including spectral information. In this work, two-way chromatographic objective functions (COFs) that incorporate both time and spectral information were tested, based on the peak purity (analyte peak fraction free of overlapping) and the multivariate selectivity (figure of merit derived from the net analyte signal) concepts. These COFs are s…
Peak capacity estimation in isocratic elution.
Peak capacity (i.e. maximal number of resolved peaks that fit in a chromatographic window) is a theoretical concept with growing interest, but based on a situation rarely met in practice. Real chromatograms tend to have uneven distributions, with overlapped peaks and large gaps. The number of resolved compounds should, therefore, be known from estimations. Several equations have been reported for this purpose based on three perspectives, namely, the intuitive approach (peak capacity as the size of the retention time window measured in peak width units), which assumes peaks with the same width, and the outlines of Giddings and Grushka, which consider changes in peak width with retention time…
Combined effect of solvent content, temperature and pH on the chromatographic behaviour of ionisable compounds.
The organic solvent content and the pH in the mobile phase are the usual main factors in reversed-phase liquid chromatographic separations, owing to their strong effects on retention and/or selectivity. Temperature is often neglected. However, even in cases where the impact of this factor on selectivity is minor, the reduction in analysis time is still an interesting reason to consider it. In addition, ionisable compounds may exhibit selectivity changes, owing to the interaction of organic solvent and/or temperature with pH. The separation of ionisable compounds (nine diuretics: bendroflumethiazide, benzthiazide, bumetanide, chlorthalidone, furosemide, piretanide, probenecid, trichloromethi…
Performance of a Chromolith RP-18e column for the screening of β-blockers
The chromatographic performance of a monolithic column (Chromolith RP-18e) was comprehensively examined in the isocratic separation of ten beta-blockers, using ACN-water mobile phases, and compared with the performance of three microparticulate RP columns manufactured with different types of silica: Spherisorb ODS-2, Kromasil C18 and XTerra MS C18. The comparison considered the analysis time, selectivity, peak shape (column efficiency and asymmetry) and resolution, and was extended to a wide range of mobile phase compositions. The Chromolith column showed good performance for the analysis of beta-blockers with regard to the packed columns. In terms of selectivity and analysis time, the grea…
Determination of the hydrophobicity of organic compounds measured as logPo/w through a new chromatographic method
A new chromatographic method to determine the octanol-water partition coefficient (logP(o/w)) of organic substances is proposed in this paper. This method is based on a previously reported model that relates the retention factor in reversed-phase liquid chromatography with solute (p), mobile phase (P(m)(N)) and stationary phase (P(s)(N)) polarity parameters: logk=(logk)(0)+p(P(m)(N)-P(s)(N)). P(m)(N) values are calculated through expressions that depend only on the organic solvent fraction in the mobile phase. (logk)(0) and P(s)(N) parameters are characteristic of the chromatographic system and are determined from the retention of a selected set of 12 compounds. Then, the p value of a solut…
Performance of Markers and the Homologous Series Method for Dead Time Estimation in Reversed-Phase Liquid Chromatography
Abstract Two methods for dead time estimation (the use of markers and the homologous series mathematical method) are revised. Out of twelve assayed common markers, only KBr, KI, tartrazine, thiourea, uracil, and urea yielded retention times independent of the mobile phase composition in the range 10–90% acetonitrile, using a Zorbax Eclipse XDB−C18 column. On the other hand, the quality of the estimations provided by the homologous series method was limited by the mathematical approach and the data quality. With this method, the estimated dead time is an extrapolated value, which is severely affected by the data of the most retained compounds that act as leverage points, biasing the result. …
Approaches to characterise chromatographic column performance based on global parameters accounting for peak broadening and skewness.
Peak broadening and skewness are fundamental parameters in chromatography, since they affect the resolution capability of a chromatographic column. A common practice to characterise chromatographic columns is to estimate the efficiency and asymmetry factor for the peaks of one or more solutes eluted at selected experimental conditions. This has the drawback that the extra-column contributions to the peak variance and skewness make the peak shape parameters depend on the retention time. We propose and discuss here the use of several approaches that allow the estimation of global parameters (non-dependent on the retention time) to describe the column performance. The global parameters arise f…
Interpretive optimisation of organic solvent content and flow-rate in the separation of β-blockers with a Chromolith RP-18e column
The chromatographic performance of a Chromolith RP-18e column was comprehensively examined for a group of basic drugs (beta-blockers), eluted with isocratic ACN-water mixtures at increasing flow-rate up to 6 mL/min. As the flow-rate increases at fixed mobile phase composition, peak distribution (selectivity) is maintained, but the relative peak widths increase. This reduces the resolution below satisfactory values for closely eluting compounds. With the monolithic column, flow-rate becomes thus an important factor to be optimised, in addition to the mobile phase composition. Since, theoretically, retention factors (k) are independent of the flow-rate, the classical quadratic model relating …
Correction of the deviations in the retention times with Chromolith columns associated to the flow rate: Implications in the modelling of the retention behaviour
In a previous work (J. Sep. Sci. 2009, 32, 2793-2803), we reported an interpretive optimisation approach to achieve maximal resolution in minimal analysis time, based on models describing the retention and peak shape as a function of mobile phase composition and flow rate. The method was applied to the separation of a group of basic drugs in a Chromolith column. In that work, we found that the retention factors were sensitive to the flow rate. The reason of the observed deviations in retention times is the increase in the column volume at the applied pressure, which decreases the linear velocity inside the column. This behaviour forced to include a correction term in the model that describe…