0000000000144562

AUTHOR

Maria Jesús García-murria

showing 14 related works from this author

A Bimolecular Multicellular Complementation System for the Detection of Syncytium Formation: A New Methodology for the Identification of Nipah Virus …

2019

Fusion of viral and cellular membranes is a key step during the viral life cycle. Enveloped viruses trigger this process by means of specialized viral proteins expressed on their surface, the so-called viral fusion proteins. There are multiple assays to analyze the viral entry including those that focus on the cell-cell fusion induced by some viral proteins. These methods often rely on the identification of multinucleated cells (syncytium) as a result of cell membrane fusions. In this manuscript, we describe a novel methodology for the study of cell-cell fusion. Our approach, named Bimolecular Multicellular Complementation (BiMuC), provides an adjustable platform to qualitatively and quanti…

0301 basic medicinevirusesmembrane fusionlcsh:QR1-502virusNipah virusBiologyGiant Cells01 natural scienceslcsh:MicrobiologySmall Molecule Libraries03 medical and health sciencesVirus entryViral envelopeViral life cycleViral entryVirologyDrug DiscoveryHumansSyncytiumDrug discoveryBrief ReportbiomolèculesHigh-throughput screeningLipid bilayer fusionVirus InternalizationFusion proteinHigh-Throughput Screening Assays0104 chemical sciencesCell biologyBimolecular complementation010404 medicinal & biomolecular chemistryMulticellular organismHEK293 Cells030104 developmental biologyInfectious DiseasesViruses
researchProduct

The C-terminal Domains of Apoptotic BH3-only Proteins Mediate Their Insertion into Distinct Biological Membranes

2016

Changes in the equilibrium of pro- and anti-apoptotic members of the B-cell lymphoma-2 (Bcl-2) protein family in the mitochondrial outer membrane (MOM) induce structural changes that commit cells to apoptosis. Bcl-2 homology-3 (BH3)-only proteins participate in this process by either activating pro-apoptotic effectors or inhibiting anti-apoptotic components and by promoting MOM permeabilization. The association of BH3-only proteins with MOMs is necessary for the activation and amplification of death signals; however, the nature of this association remains controversial, as these proteins lack a canonical transmembrane sequence. Here we used an in vitro expression system to study the inserti…

0301 basic medicineProtein familyCèl·lulesBiologyBiochemistryMitochondrial Proteins03 medical and health sciencesProtein DomainsMembranes (Biologia)Protein-fragment complementation assayMembrane BiologyMicrosomesProto-Oncogene ProteinsHumansMolecular BiologyAdaptor Proteins Signal TransducingGeneticsBcl-2-Like Protein 11030102 biochemistry & molecular biologyCell MembraneBcl-2 familyProteïnes de membranaMembrane ProteinsBiological membraneCell BiologyFusion proteinTransmembrane proteinCell biology030104 developmental biologyMembraneProto-Oncogene Proteins c-bcl-2Membrane proteinB-cell lymphoma 2 (Bcl-2) family BH3-only apoptosis membrane insertion membrane protein mitochondrial apoptosis transmembrane domainApoptosis Regulatory ProteinsHydrophobic and Hydrophilic InteractionsHeLa CellsJournal of Biological Chemistry
researchProduct

The role of hydrophobic matching on transmembrane helix packing in cells

2017

Folding and packing of membrane proteins are highly influenced by the lipidic component of the membrane. Here, we explore how the hydrophobic mismatch (the difference between the hydrophobic span of a transmembrane protein region and the hydrophobic thickness of the lipid membrane around the protein) influences transmembrane helix packing in a cellular environment. Using a ToxRED assay in Escherichia coli and a Bimolecular Fluorescent Complementation approach in human-derived cells complemented by atomistic molecular dynamics simulations we analyzed the dimerization of Glycophorin A derived transmembrane segments. We concluded that, biological membranes can accommodate transmembrane homo-di…

Cancer ResearchPhysiologyCèl·luleslcsh:Medicine010402 general chemistry114 Physical sciences01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)03 medical and health sciencesHydrophobic mismatchhydrophobic matchhelix packingLipid bilayerlcsh:QH301-705.5030304 developmental biology0303 health sciencesChemistrylcsh:RGlycophorin AProteïnes de membranaGlycophorin ABiological membranetransmembrane domain dimerizationmembrane protein foldingTransmembrane protein0104 chemical sciencesFolding (chemistry)Transmembrane domainMembranelcsh:Biology (General)Membrane proteinBiophysicsMolecular MedicinemismatchResearch ArticleCell Stress
researchProduct

Characterization of the inner membrane protein BB0173 from Borrelia burgdorferi.

2017

Abstract Background The bacterial spirochete Borrelia burgdorferi is the causative agent of the most commonly reported arthropod-borne illness in the United States, Lyme disease. A family of proteins containing von Willebrand Factor A (VWFA) domains adjacent to a MoxR AAA+ ATPase have been found to be highly conserved in the genus Borrelia. Previously, a VWFA domain containing protein of B. burgdorferi, BB0172, was determined to be an outer membrane protein capable of binding integrin α3β1. In this study, the characterization of a new VWFA domain containing membrane protein, BB0173, is evaluated in order to define the location and topology of this multi-spanning membrane protein. In additio…

0301 basic medicineMicrobiology (medical)Models Molecular030106 microbiologylcsh:QR1-502MicrobiologiaDown-RegulationGene ExpressionBiologyEndoplasmic ReticulumMicrobiologylcsh:MicrobiologyMicrobiology03 medical and health sciencesBacterial ProteinsStress PhysiologicalBorreliaInner membraneAmino Acid SequenceBorrelia burgdorferiAerotoleranceCell MembraneProteïnes de membranaMembrane ProteinsPeriplasmic spacebiology.organism_classificationbacterial infections and mycosesTransmembrane proteinTransmembraneCell biologyOxygenTransmembrane domainMembrane proteinBorrelia burgdorferivonWillebrand factor aMutationPeriplasmBacterial outer membraneSequence AlignmentResearch ArticleMIDAS motifBMC microbiology
researchProduct

Proteomic composition of Nipah virus-like particles

2017

Abstract Virions are often described as virus-only entities with no cellular components with the exception of the lipids in their membranes. However, advances in proteomics are revealing substantial amounts of host proteins in the viral particles. In the case of Nipah virus (NiV), the viral components in the virion have been known for some time. Nonetheless, no information has been obtained regarding the cellular proteins in the viral particles. To address this question, we produced Virus-Like Particles (VLPs) for NiV by expressing the F, G and M proteins in human-derived cells. Next, the proteomic content in these VLPs was analyzed by LC-MS/MS. We identified 67 human proteins including sol…

Proteomics0301 basic medicinevirusesNipah virusHost–pathogen interactionBiophysicsBiologyProteomicsBiochemistryVirusViral Proteins03 medical and health sciencesViral life cycleViral envelopeTandem Mass SpectrometryViral entryHumans030102 biochemistry & molecular biologyNipah VirusVirionVirology030104 developmental biologyCellular componentHost-Pathogen InteractionsChromatography LiquidProtein BindingJournal of Proteomics
researchProduct

The Role of Hydrophobic Mismatch on Transmembrane Helix Dimerization in Living Cells

2019

0303 health sciences03 medical and health sciencesTransmembrane domainHydrophobic mismatchChemistryBiophysicsBiophysics010402 general chemistry01 natural sciences030304 developmental biology0104 chemical sciencesBiophysical Journal
researchProduct

Redox modulation of Rubisco conformation and activity through its cysteine residues

2008

Treatment of purified Rubisco with agents that specifically oxidize cysteine-thiol groups causes catalytic inactivation and increased proteolytic sensitivity of the enzyme. It has been suggested that these redox properties may sustain a mechanism of regulating Rubisco activity and turnover during senescence or stress. Current research efforts are addressing the structural basis of the redox modulation of Rubisco and the identification of critical cysteines. Redox shifts result in Rubisco conformational changes as revealed by the alteration of its proteolytic fragmentation pattern upon oxidation. In particular, the augmented susceptibility of Rubisco to proteases is due to increased exposure…

inorganic chemicalsChloroplastsbiologyPhysiologyCatabolismCysteamineRibulose-Bisphosphate CarboxylasefungiRuBisCOMutagenesisfood and beveragesChlamydomonas reinhardtiiPlant ScienceOxidative phosphorylationPlantsbiology.organism_classificationRedoxChloroplastBiochemistryPlant Cellsbiology.proteinAmino Acid SequenceOxidation-ReductionCysteineJournal of Experimental Botany
researchProduct

N-Linked Glycosylation of the p24 Family Protein p24δ5 Modulates Retrograde Golgi-to-ER Transport of K/HDEL Ligands in Arabidopsis

2017

Abstract The K/HDEL receptor ERD2 mediates the transport of soluble endoplasmic reticulum (ER)-resident proteins containing a C-terminal K/HDEL signal from the Golgi apparatus back to the ER via COPI (COat Protein I)-coated vesicles. Sorting of ERD2 within COPI vesicles is facilitated by p24 proteins. In Arabidopsis , p24δ5 has been shown to interact directly with ERD2 via its luminal GOLD (GOLgi Dynamics) domain and with COPI proteins via its cytoplasmic C-terminal tail at the acidic pH of the Golgi apparatus. Several members of the p24 family in mammals and yeast have been shown to be glycosylated, but whether Arabidopsis p24 proteins are glycosylated and the role of the sugar moiety in p…

0301 basic medicineGlycosylationArabidopsisGolgi ApparatusPlant ScienceBiologyEndoplasmic ReticulumBiotecnologia03 medical and health sciencessymbols.namesakeN-linked glycosylationArabidopsisMolecular BiologyCOPIIArabidopsis ProteinsVesicleEndoplasmic reticulumCOPIGolgi apparatusbiology.organism_classificationCell biology030104 developmental biologyCytoplasmsymbolsProteïnes
researchProduct

Viral Bcl2s' transmembrane domain interact with host Bcl2 proteins to control cellular apoptosis

2020

© The Author(s) 2020.

0301 basic medicineProgrammed cell deathScienceProtein domainGeneral Physics and AstronomyApoptosisBiologyVirus-host interactionsArticleGeneral Biochemistry Genetics and Molecular BiologyFluorescenceCell Line03 medical and health sciences0302 clinical medicineProtein Domainsimmune system diseaseshemic and lymphatic diseasesmedicineHumansAmino Acid SequenceAuthor CorrectionPeptide sequenceneoplasmsMultidisciplinaryVirus–host interactionsQCell MembraneGeneral ChemistryViral proteinsmedicine.diseaseControl cellLymphomaCell biologyVirusTransmembrane domain030104 developmental biologyProto-Oncogene Proteins c-bcl-2Cell cultureApoptosisDoxorubicin030220 oncology & carcinogenesisbiological phenomena cell phenomena and immunityProtein MultimerizationHydrophobic and Hydrophilic InteractionsProteïnesProtein Binding
researchProduct

The ER-Membrane Transport System Is Critical for Intercellular Trafficking of the NSm Movement Protein and Tomato Spotted Wilt Tospovirus.

2015

Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An…

RNA viruses0301 basic medicineLeavesCell MembranesNicotiana benthamianaPlant ScienceEndoplasmic ReticulumPathology and Laboratory MedicineBiochemistrySolanum lycopersicumTospovirusBunyavirusesMedicine and Health SciencesArabidopsis thalianaMovement proteinBiology (General)Integral membrane proteinSecretory PathwaybiologyPlant BiochemistryPlant AnatomyPlasmodesmataProteïnes de membranafood and beveragesPlantsPlants Genetically ModifiedCell biologyTransport proteinPlant Viral Movement ProteinsProtein TransportMedical MicrobiologyCell ProcessesViral PathogensVirusesPathogensCellular Structures and OrganellesTomato Spotted Wilt VirusResearch ArticleBioquímicaCell PhysiologyQH301-705.5Arabidopsis ThalianaImmunologyPlant PathogensBrassicaPlasmodesmaResearch and Analysis MethodsMicrobiologyPlant Viral Pathogens03 medical and health sciencesModel OrganismsPlant and Algal ModelsVirologyTobaccoGeneticsIntegral Membrane ProteinsSecretionMicrobial PathogensMolecular BiologyPlant DiseasesBiology and life sciencesEndoplasmic reticulumfungiOrganismsMembrane ProteinsCell BiologyPlant PathologyRC581-607biology.organism_classificationVirosis (Plantes)VirologyPlant Leaves030104 developmental biologyMembrane TraffickingParasitologyImmunologic diseases. AllergyPLoS Pathogens
researchProduct

Differences in the Association of BH3-Only Proteins to Biological Membranes

2017

Apoptosis, a prevalent mechanism of programmed cell death, is regulated by the Bcl-2 protein family. The balance between pro- and anti-apoptotic Bcl-2 members in the mitochondrial outer membrane (MOM) protects or triggers MOM permeabilization. Bcl-2 homology-3 (BH3)-only proteins participate in this process activating pro-apoptotic effectors and promoting permeabilization of the MOM. The membrane association of BH3-only proteins is controversial due to the lack of a canonical carboxyl-terminal (C-terminal) transmembrane (TM) domain. We used an in vitro transcription/translation system to study the insertion capacity of these hydrophobic C-terminal regions of the BH3-members Bik, Bim, Noxa, …

MembraneProtein familyProtein-fragment complementation assayBcl-2 familyBiophysicsBiological membraneBiologyBacterial outer membraneTransmembrane proteinCell biologyGreen fluorescent proteinBiophysical Journal
researchProduct

REDOX PROPERTIES ARE CONSERVED IN RUBISCOS FROM DIATOMS AND GREEN ALGAE THROUGH A DIFFERENT PATTERN OF CYSTEINES1

2010

Eukaryotic RUBISCO appears in two sequence-diverging forms, known as red-like (present in nongreen algae) and green-like (of green algae and higher plants) types. Oxidation of cysteines from green-like RUBISCOs is known to result in conformational changes that inactivate the enzyme and render a relaxed structure more prone to proteolytic attack. These changes may have regulatory value for green algae and higher plants, promoting RUBISCO catabolism under stress conditions. We compare here red-like RUBISCOs from several diatoms with a representative green-like RUBISCO from Chlamydomonas reinhardtii, paying special attention to the cysteine-dependent redox properties. Purified diatom RUBISCO p…

inorganic chemicalschemistry.chemical_classificationbiologyfungiRuBisCOfood and beveragesChlamydomonas reinhardtiiPlant ScienceAquatic Sciencebiology.organism_classificationPyruvate carboxylaseDiatomEnzymeAlgaechemistryBiochemistrybiology.proteinGreen algaeCysteineJournal of Phycology
researchProduct

A Bimolecular Multicelular complementation system for the detection of syncytium formation: A new methodology for the identification of entry inhibit…

2019

AbstractFusion of viral and cellular membranes is a key step during the viral life cycle. Enveloped viruses trigger this process by means of specialized viral proteins expressed on their surface, the so called viral fusion proteins. There are multiple assays to analyze the viral entry including those that focus on the cell-cell fusion induced by some viral proteins. These methods often rely on the identification of multinucleated cells (syncytium) as a result of cell membrane fusions. In this manuscript, we describe a novel methodology for the study of cell-cell fusion. Our approach, named Bimolecular Multicelular Complementation (BiMuC), provides an adjustable platform to investigate quali…

Cell membraneComplementationSyncytiummedicine.anatomical_structureViral envelopeViral life cycleChemistryViral entryDrug discoveryvirusesmedicineComputational biologySmall molecule
researchProduct

The SARS-CoV-2 envelope (E) protein has evolved towards membrane topology robustness.

2021

- Single-spanning SARS-CoV-2 envelope (E) protein topology is a major determinant of protein quaternary structure and function. - Charged residues distribution in E protein sequences from highly pathogenic human coronaviruses (i.e., SARS-CoV, MERS-CoV and SARS-CoV-2) stabilize Ntout-Ctin membrane topology. - E protein sequence could have evolved to ensure a more robust membrane topology from MERS-CoV to SARS-CoV and SARS-CoV-2.

EvolutionvirusesBiophysicsBBA Research Lettermedicine.disease_causeBiochemistryEnvelope proteinCell membraneEvolution Molecular03 medical and health sciencesCoronavirus Envelope ProteinsProtein sequencingmedicineHumansskin and connective tissue diseasesProtein Structure Quaternary030304 developmental biologyCoronavirus0303 health sciencesChemistrySARS-CoV-2030302 biochemistry & molecular biologyfungiCell MembraneRobustness (evolution)virus diseasesCell Biologyrespiratory tract diseasesCoronavirusmedicine.anatomical_structureMembrane topologyMembrane topologyBiophysicsProtein quaternary structureProtein topologyFunction (biology)Biochimica et biophysica acta. Biomembranes
researchProduct