Kernel Anomalous Change Detection for Remote Sensing Imagery
Anomalous change detection (ACD) is an important problem in remote sensing image processing. Detecting not only pervasive but also anomalous or extreme changes has many applications for which methodologies are available. This paper introduces a nonlinear extension of a full family of anomalous change detectors. In particular, we focus on algorithms that utilize Gaussian and elliptically contoured (EC) distribution and extend them to their nonlinear counterparts based on the theory of reproducing kernels' Hilbert space. We illustrate the performance of the kernel methods introduced in both pervasive and ACD problems with real and simulated changes in multispectral and hyperspectral imagery w…
Measuring the Spatial and Spectral Performance of WorldView-3
The new WorldView-3 satellite provides a unique combination of very high spatial resolution and super-spectral capabilities. This presentation explores the practical and theoretical usefulness of this platform as compared against other hyperspectral and multispectral sensors.
Prelaunch assessment of worldview-3 information content
The upcoming WorldView-3 satellite is designed to collect unique data by combining very-high spatial resolution (VHR) with observation bands in the short wave infrared (SWIR) in addition to the visible and near-infrared (VNIR) multispectral and panchromatic bands currently available on the VHR WorldView-2 system. These SWIR bands were specifically selected in order to target unique reflectance and absorption features presented by various surface materials and should, therefore, significantly improve the platforms information content for many image mining applications. This presentation explores the information content available to the WorldView-3 platform in two ways. First, second-order st…
A family of kernel anomaly change detectors
This paper introduces the nonlinear extension of the anomaly change detection algorithms in [1] based on the theory of reproducing kernels. The presented methods generalize their linear counterparts, under both the Gaussian and elliptically-contoured assumptions, and produce both improved detection accuracies and reduced false alarm rates. We study the Gaussianity of the data in Hilbert spaces with kernel dependence estimates, provide low-rank kernel versions to cope with the high computational cost of the methods, and give prescriptions about the selection of the kernel functions and their parameters. We illustrate the performance of the introduced kernel methods in both pervasive and anom…