Strain Switching in van der Waals Heterostructures triggered by a Spin-Crossover Metal Organic Framework
Van der Waals heterostructures (vdWHs) combine different layered materials with properties of interest,1 such as two-dimensional (2D) semimetals, semiconductors, magnets or superconductors. These heterostructures provide the possibility of engineering new materials with emergent functionalities that are not accessible in another way. Beyond inorganic 2D materials, layered molecular materials remain still rather unexplored, with only few examples regarding their isolation as atomically thin-layers. By a proper chemical design, the physical properties of these systems can be tuned, as illustrated by the so-called spin-crossover (SCO) compounds, in which a spin transition can be induced by app…
Probing the spin dimensionality in single-layer CrSBr van der Waals heterostructures by magneto-transport measurements
Two-dimensional (2D) magnetic materials offer unprecedented opportunities for fundamental physics and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2Ge2Te6, this emerging field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air-stable semiconductor formed by antiferromagnetically-coupled ferromagnetic layers (Tc~150 K) that can be exfoliated down to the single-layer. It presents a complex magnetic behavior with a dynamic magnetic crossover leading to a low-temperature hidden order below T*~40 K. Here, we inspect the magneto-transport …
Ultrafast Coherent THz Lattice Dynamics Coupled to Spins in the van der Waals Antiferromagnet FePS3
Coherent THz optical lattice and hybridized phonon–magnon modes are triggered by femtosecond laser pulses in the antiferromagnetic van der Waals semiconductor FePS3. The laser-driven lattice and spin dynamics are investigated in a bulk crystal as well as in a 380 nm-thick exfoliated flake as a function of the excitation photon energy, sample temperature and applied magnetic field. The pump-probe magneto-optical measurements reveal that the amplitude of a coherent phonon mode oscillating at 3.2 THz decreases as the sample is heated up to the Néel temperature. This signal eventually vanishes as the phase transition to the paramagnetic phase occurs, thus revealing its connection to the long-ra…
van der Waals heterostructures based on atomically-thin superconductors
Van der Waals heterostructures (vdWHs) allow the assembly of high-crystalline two-dimensional (2D) materials in order to explore dimensionality effects in strongly correlated systems and the emergence of potential new physical scenarios. In this work, it is illustrated the feasibility to integrate 2D materials in-between 2D superconductors. Particularly, it is presented the fabrication and electrical characterization of vertical vdWHs based on air-unstable atomically-thin transition metal dichalcogenides formed by NbSe2/TaS2/NbSe2 stacks, with TaS2 being the insulator 1T-TaS2 or the metal 2H-TaS2. Phase transitions as 1T-TaS2 charge density wave and NbSe2 superconductivity are detected. An …
Out-of-plane transport of 1T-TaS2/graphene-based van der Waals heterostructures
Due to their anisotropy, layered materials are excellent candidates for studying the interplay between the in-plane and out-of-plane entanglement in strongly correlated systems. A relevant example is provided by 1T-TaS2, which exhibits a multifaceted electronic and magnetic scenario due to the existence of several charge density wave (CDW) configurations. It includes quantum hidden phases, superconductivity and exotic quantum spin liquid (QSL) states, which are highly dependent on the out-of-plane stacking of the CDW. In this system, the interlayer stacking of the CDW is crucial for the interpretation of the underlying electronic and magnetic phase diagram. Here, thin-layers of 1T-TaS2 are …