0000000000145826

AUTHOR

Krišjānis Prūsis

showing 14 related works from this author

A Tight Lower Bound on Certificate Complexity in Terms of Block Sensitivity and Sensitivity

2014

Sensitivity, certificate complexity and block sensitivity are widely used Boolean function complexity measures. A longstanding open problem, proposed by Nisan and Szegedy, is whether sensitivity and block sensitivity are polynomially related. Motivated by the constructions of functions which achieve the largest known separations, we study the relation between 1-certificate complexity and 0-sensitivity and 0-block sensitivity. Previously the best known lower bound was $C_1(f)\geq \frac{bs_0(f)}{2 s_0(f)}$, achieved by Kenyon and Kutin. We improve this to $C_1(f)\geq \frac{3 bs_0(f)}{2 s_0(f)}$. While this improvement is only by a constant factor, this is quite important, as it precludes achi…

Computer Science - Computational Complexity
researchProduct

Būla funkciju bloku jūtīgums

2014

Darbā tiek pētīta neatrisināta problēma par divu Būla funkciju sarežģītības mēru - jūtīguma un bloku jūtīguma - sakarību. Darba ietvaros tiek aplūkota arī šo mēru saistība ar vēl vienu sarežģītības mēru - sertifikātu sarežģītību, jo funkcijās, kas maksimizē meklēto atšķirību, sertifikātu sarežģītība ir vienāda ar jūtīgumu. Darbā tiek pierādīta apakšējā robeža sertifikātu sarežģītībai attiecībā pret bloku jūtīguma un jūtīguma attiecību. Tā izslēdz iespēju uzlabot meklēto atšķirību, izmantojot konstrukciju, ar ko iegūti līdzšinējie rezultāti. Šī robeža arī ir asimptotiski cieša, jo labākā zināmā konstrukcija to sasniedz.

Datorzinātne
researchProduct

Doubling the success of quantum walk search using internal-state measurements

2015

In typical discrete-time quantum walk algorithms, one measures the position of the walker while ignoring its internal spin/coin state. Rather than neglecting the information in this internal state, we show that additionally measuring it doubles the success probability of many quantum spatial search algorithms. For example, this allows Grover's unstructured search problem to be solved with certainty, rather than with probability 1/2 if only the walker's position is measured, so the additional measurement yields a search algorithm that is twice as fast as without it, on average. Thus the internal state of discrete-time quantum walks holds valuable information that can be utilized to improve a…

Statistics and ProbabilityQuantum PhysicsComputer scienceDegenerate energy levelsFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear Physics01 natural sciences010305 fluids & plasmasSearch algorithmPosition (vector)Modeling and Simulation0103 physical sciencesSearch problemQuantum walkPerturbation theory (quantum mechanics)Statistical physicsQuantum Physics (quant-ph)010306 general physicsQuantumMathematical PhysicsSpin-½Journal of Physics A: Mathematical and Theoretical
researchProduct

Stationary states in quantum walk search

2016

When classically searching a database, having additional correct answers makes the search easier. For a discrete-time quantum walk searching a graph for a marked vertex, however, additional marked vertices can make the search harder by causing the system to approximately begin in a stationary state, so the system fails to evolve. In this paper, we completely characterize the stationary states, or 1-eigenvectors, of the quantum walk search operator for general graphs and configurations of marked vertices by decomposing their amplitudes into uniform and flip states. This infinitely expands the number of known stationary states and gives an optimization procedure to find the stationary state c…

Connected componentPhysicsQuantum PhysicsFOS: Physical sciences01 natural sciencesGraphOracle010305 fluids & plasmasVertex (geometry)CombinatoricsSearch algorithm0103 physical sciencesBipartite graphQuantum walkQuantum Physics (quant-ph)010306 general physicsStationary statePhysical Review A
researchProduct

On Block Sensitivity and Fractional Block Sensitivity

2018

We investigate the relation between the block sensitivity bs(f) and fractional block sensitivity fbs(f) complexity measures of Boolean functions. While it is known that fbs(f) = O(bs(f)2), the best known separation achieves $${\rm{fbs}}\left( f \right) = \left( {{{\left( {3\sqrt 2 } \right)}^{ - 1}} + o\left( 1 \right)} \right){\rm{bs}}{\left( f \right)^{3/2}}$$ . We improve the constant factor and show a family of functions that give fbs(f) = (6−1/2 − o(1)) bs(f)3/2.

FOS: Computer and information sciencesGeneral Mathematics010102 general mathematicsBlock (permutation group theory)0102 computer and information sciencesComputational Complexity (cs.CC)01 natural sciencesConstant factorCombinatoricsComputer Science - Computational Complexity010201 computation theory & mathematicsSensitivity (control systems)0101 mathematicsAlgebra over a fieldMathematics
researchProduct

All Classical Adversary Methods Are Equivalent for Total Functions

2017

We show that all known classical adversary lower bounds on randomized query complexity are equivalent for total functions and are equal to the fractional block sensitivity fbs( f ). That includes the Kolmogorov complexity bound of Laplante and Magniez and the earlier relational adversary bound of Aaronson. This equivalence also implies that for total functions, the relational adversary is equivalent to a simpler lower bound, which we call rank-1 relational adversary. For partial functions, we show unbounded separations between fbs( f ) and other adversary bounds, as well as between the adversary bounds themselves. We also show that, for partial functions, fractional block sensitivity canno…

FOS: Computer and information sciencesKolmogorov complexity010102 general mathematicsBlock (permutation group theory)0102 computer and information sciencesFunction (mathematics)Computational Complexity (cs.CC)Adversary01 natural sciencesUpper and lower boundsTheoretical Computer ScienceCombinatoricsComputer Science - Computational ComplexityComputational Theory and Mathematics010201 computation theory & mathematicsPartial functionSensitivity (control systems)0101 mathematicsEquivalence (measure theory)MathematicsACM Transactions on Computation Theory
researchProduct

Exact affine counter automata

2017

We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic k-counter automata. We also show that a certain promise problem, which is conjectured not to be solved by two-way quantum finite automata in polynomial time, can be solved by Las Vegas affine finite automata. Lastly, we show that how a counter helps for affine finite automata by showing that the language MANYTWINS, which is conjectured not to be recognized by affin…

FOS: Computer and information sciencesTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESautomataFormal Languages and Automata Theory (cs.FL)GeneralizationComputer scienceFOS: Physical sciencesComputer Science - Formal Languages and Automata Theorycounter automataМатематика0102 computer and information sciences02 engineering and technologyComputational Complexity (cs.CC)01 natural sciencesquantum computinglcsh:QA75.5-76.95Deterministic pushdown automatonComputer Science (miscellaneous)0202 electrical engineering electronic engineering information engineeringQuantum finite automataPromise problemTime complexityDiscrete mathematicsQuantum Physicscomputational complexityFinite-state machinelcsh:MathematicsИнформатикаpushdown automatalcsh:QA1-939Nonlinear Sciences::Cellular Automata and Lattice GasesКибернетикаAutomatonComputer Science - Computational ComplexityTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES010201 computation theory & mathematics020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceAffine transformationaffine computingQuantum Physics (quant-ph)Computer Science::Formal Languages and Automata Theory
researchProduct

A Potential Field Function for Overlapping Point Set and Graph Cluster Visualization

2015

In this paper we address the problem of visualizing overlapping sets of points with a fixed positioning in a comprehensible way. A standard visualization technique is to enclose the point sets in isocontours generated by bounding a potential field function. The most commonly used functions are various approximations of the Gaussian distribution. Such an approach produces smooth and appealing shapes, however it may produce an incorrect point nesting in generated regions, e.g. some point is contained inside a foreign set region. We introduce a different potential field function that keeps the desired properties of Gaussian distribution, and in addition guarantees that every point belongs to a…

Discrete mathematicsComputer sciencebusiness.industryGaussianGraph of a functionMixed graphFunction (mathematics)Strength of a graphGraphSet (abstract data type)symbols.namesakesymbolsGraph (abstract data type)Point (geometry)Artificial intelligencebusinessAlgorithm
researchProduct

A Tight Lower Bound on Certificate Complexity in Terms of Block Sensitivity and Sensitivity

2014

Sensitivity, certificate complexity and block sensitivity are widely used Boolean function complexity measures. A longstanding open problem, proposed by Nisan and Szegedy [7], is whether sensitivity and block sensitivity are polynomially related. Motivated by the constructions of functions which achieve the largest known separations, we study the relation between 1-certificate complexity and 0-sensitivity and 0-block sensitivity.

Discrete mathematicsOpen problem020206 networking & telecommunications0102 computer and information sciences02 engineering and technologyCertificate01 natural sciencesUpper and lower bounds010201 computation theory & mathematics0202 electrical engineering electronic engineering information engineeringSensitivity (control systems)Boolean functionBlock (data storage)Mathematics39th International Symposium on Mathematical Foundations of Computer Science, MFCS 2014
researchProduct

Oscillatory Localization of Quantum Walks Analyzed by Classical Electric Circuits

2016

We examine an unexplored quantum phenomenon we call oscillatory localization, where a discrete-time quantum walk with Grover's diffusion coin jumps back and forth between two vertices. We then connect it to the power dissipation of a related electric network. Namely, we show that there are only two kinds of oscillating states, called uniform states and flip states, and that the projection of an arbitrary state onto a flip state is bounded by the power dissipation of an electric circuit. By applying this framework to states along a single edge of a graph, we show that low effective resistance implies oscillatory localization of the quantum walk. This reveals that oscillatory localization occ…

PhysicsQuantum PhysicsFOS: Physical sciencesState (functional analysis)Edge (geometry)Dissipation01 natural sciencesProjection (linear algebra)010305 fluids & plasmasQuantum mechanicsBounded function0103 physical sciencesQuantum walkStatistical physics010306 general physicsQuantum Physics (quant-ph)QuantumElectronic circuit
researchProduct

Error-Free Affine, Unitary, and Probabilistic OBDDs

2021

We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las-Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata counterparts of these models.

Discrete mathematicsState complexityComputer Science::Logic in Computer ScienceComputer Science (miscellaneous)Probabilistic logicAffine transformationComputer Science::Computational ComplexityComputer Science::Artificial IntelligenceUnitary stateComputer Science::DatabasesMathematicsZero errorInternational Journal of Foundations of Computer Science
researchProduct

Error-Free Affine, Unitary, and Probabilistic OBDDs

2018

We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata versions of these models.

Discrete mathematicsQuadratic growthLas vegas010102 general mathematicsProbabilistic logic02 engineering and technologyComputer Science::Computational ComplexityComputer Science::Artificial Intelligence01 natural sciencesUnitary stateAutomatonSuccinctnessComputer Science::Logic in Computer Science0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingAffine transformation0101 mathematicsComputer Science::DatabasesZero errorMathematics
researchProduct

Starpībkopu atbalsta bibliotēka

2010

Darbā “Starpībkopu atbalsta bibliotēka” aprakstīta C++ bibliotēkas darbam ar starpībkopām izstrāde. Bibliotēka ļauj pārbaudīt starpībkopu ar konkrētiem parametriem esamību,(Lai gan to nevar pateikt visiem parametru komplektiem.) konstruēt sešu tipu starpībkopas, un ir veidota tā, lai būtu viegli to papildināt ar vēl citiem starpībkopu veidiem. Bibliotēka tiek pasniegta pirmkoda viedā.

Datorzinātne
researchProduct

Full Characterization of Oscillatory Localization of Quantum Walks

2016

Discrete-time quantum walks are well-known for exhibiting localization, a quantum phenomenon where the walker remains at its initial location with high probability. In companion with a joint Letter, we introduce oscillatory localization, where the walker alternates between two states. The walk is given by the flip-flop shift, which is easily defined on non-lattice graphs, and the Grover coin. Extremely simple examples of the localization exist, such as a walker jumping back and forth between two vertices of the complete graph. We show that only two kinds of states, called flip states and uniform states, exhibit exact oscillatory localization. So the projection of an arbitrary state onto the…

Quantum PhysicsFOS: Physical sciencesQuantum Physics (quant-ph)
researchProduct