0000000000146095

AUTHOR

Arnaud Mussot

showing 8 related works from this author

Amplification paramétrique d'impulsion ultra-courte dans les fibres optiques

2015

International audience;

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]
researchProduct

Turbulent Dynamics of an Incoherently Pumped Passive Optical Fibre Cavity: quasi-solitons and dispersive waves

2014

International audience; We study numerically and experimentally the dynamics of an incoherently pumped passive optical fibre ring cavity. We show that the cavity exhibits a quasi-soliton turbulence dynamics, whose properties are controlled by the degree of coherence of the injected pump wave: as the coherence of the pump is degraded, the cavity exhibits a transition from the quasi-soliton turbulent regime toward the weakly nonlinear turbulent regime characterized by short-lived rogue wave events. This behavior is reminiscent of the corresponding dynamics obtained in the purely conservative (Hamiltonian) problem. Experimental results are reported by using a standard telecommunication optical…

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Physics::Optics
researchProduct

Thermodynamic approach of supercontinuum generation in photonic crystal fiber

2009

We show that the spectral broadening process inherent to supercontinuum generation may be described as a thermalization process, which results from the natural irreversible evolution of the optical field towards a thermodynamic equilibrium state.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiberMaterials science[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryThermodynamic equilibriumPhysics::OpticsNonlinear opticsOptical field01 natural scienceslaw.inventionSupercontinuum010309 opticslaw0103 physical sciencesOptoelectronics010306 general physicsbusinessComputingMilieux_MISCELLANEOUSPhotonic-crystal fiberDoppler broadeningPhotonic crystal
researchProduct

Thermodynamic approach of supercontinuum generation

2009

International audience; This paper is aimed at providing an overview on recent theoretical and experimental works in which a thermodynamic description of the incoherent regime of supercontinuum generation has been formulated. On the basis of the wave turbulence theory, we show that this highly nonlinear and quasi-continuous-wave regime of supercontinuum generation is characterized by two different phenomena. (i) A process of optical wave thermalization ruled by the four-wave mixing effects: The spectral broadening inherent to supercontinuum generation is shown to result from the natural tendency of the optical field to reach its thermodynamic equilibrium state, i. e., the state of maximum n…

Difficult problem[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]SPATIALLY INCOHERENT-LIGHTThermodynamic equilibriumWave turbulenceSOLITONWAVE TURBULENCEPhysics::OpticsNon-equilibrium thermodynamicsOptical field01 natural sciencesCONDENSATION010309 opticsEntropy (classical thermodynamics)symbols.namesakeMODULATION-INSTABILITYQuantum mechanics0103 physical sciencesPHOTONIC CRYSTAL FIBERStatistical physicsElectrical and Electronic Engineering010306 general physicsNonlinear Schrödinger equationOPTICAL-FIBERSNonlinear Sciences::Pattern Formation and SolitonsInstrumentationComputingMilieux_MISCELLANEOUSPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Fiber nonlinear opticsDISPERSION WAVELENGTHSTHERMALIZATIONAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSupercontinuumNonlinear systemControl and Systems EngineeringsymbolsSolitonRaman scatteringPATTERN-FORMATION
researchProduct

Roadmap on optical rogue waves and extreme events

2016

Nail Akhmediev et al. ; 38 págs.; 28 figs.

:Ciències de la visió::Òptica física [Àrees temàtiques de la UPC]extreme eventsNonlinear opticsFreak-wavesProcess (engineering)Subject (philosophy)Supercontinuum generationPeregrine soliton01 natural sciences010309 opticsOptics0103 physical sciencesZero-dispersion wavelength[NLIN]Nonlinear Sciences [physics]Rogue wave010306 general physicsModulation instabilityComputingMilieux_MISCELLANEOUSPhysicsÒptica no lineal:Física [Àrees temàtiques de la UPC]Nonlinear schrodinger-equationbusiness.industryGinzburg-Landau equationnonlinear opticsRogue wavesOptical rogue wavesrogue wavesextreme events; nonlinear optics; rogue wavesExtreme eventsValue statisticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsVariety (cybernetics)Photonic crystal fibersWork (electrical)Noise-like pulsesPeregrine solitonbusinessScientific terminology
researchProduct

Experimental signature of optical wave thermalization through supercontinuum generation in photonic crystal fiber

2009

International audience; We report an experimental, numerical and theoretical study of the incoherent regime of supercontinuum generation in a two zero dispersion wavelengths fiber. By using a simple experimental setup, we show that the phenomenon of spectral broadening inherent to supercontinuum generation can be described as a thermalization process, which is characterized by an irreversible evolution of the optical field towards a thermal equilibrium state. In particular, the thermodynamic equilibrium spectrum predicted by the kinetic wave theory is characterized by a double peak structure, which has been found in quantitative agreement with the numerical simulations without adjustable pa…

LightThermodynamic equilibriumOptical fieldSpectrum Analysis Raman01 natural sciences010309 opticssymbols.namesakeOptics0103 physical sciencesFiber Optic TechnologyScattering RadiationComputer Simulation010306 general physicsPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Photons[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryTemperatureNonlinear opticsModels TheoreticalAtomic and Molecular Physics and OpticsSupercontinuumWavelengthsymbolsbusinessRaman scatteringDoppler broadeningPhotonic-crystal fiber
researchProduct

Double-seed stabilization of a continuum generated from fourth-order modulation instability

2013

Summary form only given. Modulation instability (MI) is a ubiquitous process in which a weak field is exponentially amplified through a balance between dispersive and nonlinear effects. In single-mode scalar optical fibers, the positive Kerr nonlinearity phase-mismatch can be compensated by anomalous second-order dispersion, a process known as MI2. But phase-matched solutions can also exist in normal second-order dispersion region, thanks to negative even higher-order terms [1]. This process, that we label MI4, gives rise to a pair of narrow sidebands widely detuned far from the pump. MI may grow spontaneously from broadband noise and is usually the main process involved in the early stages…

Physics[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Sidebandbusiness.industryOptical rogue wavesSoliton (optics)02 engineering and technologyStatistical fluctuations01 natural sciencesSupercontinuumComputational physics010309 opticssymbols.namesake020210 optoelectronics & photonicsOptics0103 physical sciencesDispersion (optics)0202 electrical engineering electronic engineering information engineeringsymbolsbusinessNonlinear Schrödinger equationComputingMilieux_MISCELLANEOUSPhotonic-crystal fiber
researchProduct

Active reduction of fluctuations in fourth-order modulation instability

2012

International audience; We experimentally study the fluctuation properties of a scalar fourth-order modulation instability process obtained by pumping a photonic crystal fiber in the normal dispersion region. We observe large wavelength-dependant pulse-to-pulse fluctuations which cannot be significantly reduced by stimulating the process with a single seed. Their reduction requires two seeds slightly detuned from the maximum gain frequency in order to also stimulate the second-order modulation instability process cascaded from the fourth-order one. This concept is validated by experiments and numerical simulations.

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiber[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Computer simulationbusiness.industryNoise reductionPhysics::OpticsPolarization (waves)01 natural sciencesInstabilityAtomic and Molecular Physics and Opticslaw.invention010309 opticsOpticsFourth orderlawMaximum gain0103 physical sciences010306 general physicsbusinessPhotonic-crystal fiber
researchProduct