0000000000146344
AUTHOR
Loïc Lalouat
On chip shapeable optical tweezers
International audience; Particles manipulation with optical forces is known as optical tweezing. While tweezing in free space with laser beams was established in the 1980s, integrating the optical tweezers on a chip is a challenging task. Recent experiments with plasmonic nanoantennas, microring resonators, and photonic crystal nanocavities have demonstrated optical trapping. However, the optical field of a tweezer made of a single microscopic resonator cannot be shaped. So far, this prevents from optically driven micromanipulations. Here we propose an alternative approach where the shape of the optical trap can be tuned by the wavelength in coupled nanobeam cavities. Using these shapeable …
Formation and properties of localized modes near photonic band edges
International audience
Near-field spectroscopy of low-loss waveguide integrated microcavities
International audience; A scanning near-field spectroscopy method is used to observe loss reduction and Q-factor enhancement due to transverse-mode profile matching within photonic-crystal microcavities. Near-field measurements performed directly on cavity modes are compared with three-dimensional calculations and quantitative agreement is observed. (c) 2006 American Institute of Physics.
Optical field molding within near-field coupled twinned nanobeam cavities
Twinned high Q nanobeam cavities can be optically coupled while being placed in the optical near-field of each other. They form then a new optical system which supports discrete field maps addressable by wavelength selection.
Real space observation of two-dimensional Bloch wave interferences in a negative index photonic crystal cavity
We report here the direct observation of two-dimensional (2D) Bloch wave interferences in a negative index photonic crystal by using optical near-field microscopy techniques. The photonic crystal is formed by a defectless honeycomb lattice of air holes etched in III-V semiconductor slab. A scanning near-field optical microscope is used to visualize spatially, as well as spectrally, the light distribution inside the photonic crystal. The recorded near-field spectra and maps presented here unambiguously demonstrate the Bloch wave interferences within the photonic crystal. Then, the spectral and spatial evolution of these interferences allows us to recover experimentally the 2D band diagram of…
From Measurement to Control of Electromagnetic Waves using a Near‐field Scanning Optical Microscope
Interaction en champ proche entre une sonde nanométrique et le champ de composants à cristal photonique:- interaction faible, microscopie spatialement hautement résolue- interaction forte, contrôle des propriétés du composant.
With the improvement of fabrication techniques, the nanophotonics and more especially the photonics crystals which are periodic structure at the Wavelength scale have been recently developed. In this work, by using a scanning near-field optical microscope, we study such components. Firslty, we use the local probe to visualize the light distribution inside photonic crystal microcavities etched into semiconductor III/V. We focus us on the explanation of the near-field maps formation and on the probe influence on these maps. Thus, we have visualize degeneracy splitting of optical cavity modes and clearly observed in near-field cavity modes which were not visible in far-field. Moreover, in the …
Sub-wavelength imaging of light confinement and propagation in SOI based photonic crystal devices
A light source is coupled into photonic crystal devices and a near field optical probe is used to observe the electromagnetic field propagation and distribution at a sub-wavelength scale. Bloch modes are clearly observed.
Absorption enhancement in monocrystalline Si thin films using pseudodisordered structures
21-25 june 2015; International audience; no abstract
Extraordinary tuning of a nanocavity by a near-field probe
Abstract We report here an experimental observation of an extraordinary near-field interaction between a local probe and a small-volume solid-state nanocavity. We directly compare the normally observed near-field interaction regime driven by the perturbation theory and then report the extraordinary interaction regime. Subsequently, we show that the cavity can take up to 2 min to recover from this interaction after removing the probe and that leads to an extraordinary blue-shift of the cavity resonance wavelength (∼15 nm) which depends on the probe motion above the cavity and not the position. The reasons for this effect are not fully understood yet but we try to give some explanations.
Optical near-field microscopy of light focusing through a photonic crystal flat lens
We report here the direct observation by using a scanning near-field microscopy technique of the light focusing through a photonic crystal flat lens designed and fabricated to operate at optical frequencies. The lens is fabricated using a III-V semiconductor slab, and we directly visualize the propagation of the electromagnetic waves by using a scanning near-field optical microscope. We directly evidence spatially, as well as spectrally, the focusing operating regime of the lens. At last, in light of the experimental scanning near-field optical microscope pictures, we discuss the lens ability to focus light at a subwavelength scale.
Coupling evanescently low loss Silicon-on-insulator (SOI) ridge waveguides(WGs) including high Q nanocavities: For light control
We have fabricated a multislotted optical nanoresonator with several spatial field distributions which are all addressable by the wavelength. The reported structure consists in an array of evanescently coupled single mode photonic crystal nanocavities. By using a scanning near-field optical microscope, we quantify the morphology of the different optical mode volumes and show that they consist in grids of light confined at the subwavelength scaleOver the last recent years, optical microcavities have proven their ability to slow down, control and even trap light inside an ultra small volume. Several approaches have led to quality factor (Q) records allowing to reach high photon life-time for …
When nanophotonics meet thin crystalline-silicon photovoltaics
11-18 sept. 2015; International audience; no abstract
Coupling evanescently low loss Silicon-on-insulator ridge waveguides including high Q nanocavities for light control
Summary form only given. In this work, we propose an innovative way to achieve an air-slotted nanocavities by coupling evanescently low loss Silicon-on-insulator (SOI) ridge waveguides(WGs) including high Q nanocavities exhibiting an ultrasmall modal volume V. We first show that coupling two WGs allows us to achieve a field confinement within the air slot as low as lambda/30 while preserving a high group index of the guided modes. Then we demonstrate that merging such coupled WGs with state-of-the-art high-Q/small V nanocavities is a robust way to achieve a single compact (1 µm × 3 µm) air-slotted resonator on substrate. Finally, we extend the concept to multiple air-slotted resonator syste…
A near-field actuated optical nanocavity
International audience; We demonstrate here that switching and tuning of a nanocavity resonance can be achieved by approaching a sub-micrometer tip inside its evanescent near-field. The resonance energy is tuned over a wide spectral range (Δλ/λ~10-3) without significant deterioration of the cavity peak-transmittance and of the resonance linewidth. Such a result is achieved by taking benefits from a weak tip-cavity interaction regime in which the tip behaves as a pure optical path length modulator.