0000000000146694
AUTHOR
M. D’onorio De Meo
Diluted Heisenberg Ferromagnets with Competing Ferro- and Antiferromagnetic Interactions: Evidence for a New Universality Class?
The site-diluted classical face-centered cubic (fee) Heisenberg model with exchange between nearest and (J nn > 0) next nearest (J nnn =-J nn /2) neighbors is studied by Monte Carlo simulations using the heatbath algorithm in conjunction with histogram reweighting techniques. Finite size scaling analysis suggests that the diluted system crosses over to a new type of critical behavior, different from that of the pure system, in contrast to the prediction of the Harris criterion. But this model possibly can explain related experimental findings in Eu x Sr 1-x S.
Nearest-neighbor Ising antiferromagnet on the fcc lattice: Evidence for multicritical behavior.
The phase behavior of the Ising model with nearest-neighbor antiferromagnetic interactions on the fcc lattice in a homogeneous magnetic field is studied by means of large-scale Monte Carlo simulations. In accordance with the most recent of the previous investigations, but with significantly higher accuracy, it is found that the ``triple'' point at which the disordered phase coexists with both the AB phase as well as with the ${\mathit{A}}_{3}$B phase (corresponding to the model's lattice gas interpretation as a binary alloy ${\mathit{A}}_{\mathit{xB}1\mathrm{\ensuremath{-}}\mathit{x}}$ such as ${\mathrm{Cu}}_{\mathit{x}}$${\mathrm{Au}}_{1\mathrm{\ensuremath{-}}\mathit{x}}$) occurs at a nonz…