0000000000146794

AUTHOR

Pierre Mathey

Oscillation spectra of semilinear photorefractive coherent oscillator with two pump waves

The transition of the single-frequency oscillation of a semilinear photorefractive coherent oscillator for sufficiently large coupling strengths into two-frequency oscillation is predicted and is observed experimentally. The critical value of coupling strength at which the bifurcation occurs is a function of pump-intensity ratio and cavity losses. For certain combinations of these parameters, the critical coupling strength for spectrum bifurcation becomes smaller than the threshold coupling strength: in these cases double-frequency oscillation appears at the threshold. The supercritical bifurcation in the oscillation spectrum is analogous to the second-order phase transition.

research product

Peculiarities of coherent optical oscillation in Sn_2P_2S_6 crystals

We show analytically and numerically that the unusual photorefractive nonlinear response of Sn2P2S6 crystals leads to a variety of new features of coherent optical oscillation. In addition to the explanation of the known peculiarities, new features are predicted.

research product

Phase conjugation in BaTiO 3 by use of the indirect photorefractive coupling of orthogonally polarized light waves

A phase-conjugate wave is generated when an ordinary (extraordinary) signal wave is mixed with two counterpropagating extraordinary (ordinary) waves in the plane normal to the BaTiO3 polar axis. The photorefractive grating that couples the ordinary and the extraordinary waves appears if the incident waves induce a noticeable conical parametric scattering; this grating is a difference grating of many noisy scattering gratings recorded by means of the usual diffusion-mediated charge transport. For comparable intensities of signal and pump waves this type of nonlinear wave mixing is much more efficient than that which is due to the circular bulk photovoltaic effect.

research product

Second-order optical phase transition in a semilinear photorefractive oscillator with two counterpropagating pump waves

Soft-mode onset of coherent oscillation is revealed in a semilinear cavity with two counterpropagating pump waves. From the dynamics of the oscillation intensity and the dynamics of the grating decay with the feedback applied, critical behavior is detected: Both the characteristic time of oscillation onset and grating decay time go to infinity exactly at the threshold coupling strength. A conclusion is made about the similarity of this type of oscillator to the second-order phase transition.

research product

Manipulation of fast light using photorefractive beam fanning

Light pulse group velocity manipulations due to the specific dispersion of a medium (so-called “slow” and “fast” light phenomena) can be obtained on the basis of several mechanisms. One of these techniques is two-wave mixing in a photorefractive crystal. This work presents a modification of this method, exploiting the strong beam fanning in Sb-doped Sn2P2S6 crystals. Our experimental results demonstrate a “fast light” behavior of Gaussian pulses transmitted through a Sn2P2S6:Sb sample. The phenomenon is due to the beam fanning (i.e., the self-diffraction of the incident beam on self-induced noisy photorefractive gratings) that ensures a significant depletion of the input beam. Due to the re…

research product

Enhanced photorefractive properties of Bi-doped Sn2P2S6

International audience; Enhanced photorefractive properties of tin hypothiodiphosphate (Sn2P2S6) crystals as a result of Bi doping are presented. These new crystals were obtained by the vapor-transport technique using stoichiometric Sn2P2S6 composition with an additional amount of Bi up to 0.5 mol. % in the initial compound. The bandgap edges of the obtained crystals are located at ~750 nm and shift toward the red wavelengths with increasing Bi concentration. Sn2P2S6:Bi crystals are found to exhibit larger two-beam coupling gain coefficients (up to 17 cm−1 at a wavelength of 854 nm) as compared to (i) pure Sn2P2S6 (2.5 cm−1 at 854 nm), (ii) Sn2P2S6 crystals modified by the growth conditions…

research product

Slow light with photorefractive four-wave mixing

A slowing down of light pulses using backward-wave four-wave mixing is achieved in photorefractive crystals with different coupling strength. The delay and width of the output pulse are studied as a function of the input pulse width and pump intensity ratio for the amplified transmitted beam and for the phase-conjugated beam. The delay characteristics are compared with those of the two-beam coupling. It is demonstrated that the four-wave mixing process ensures a larger slowing down of short pulses (pulses with width shorter than the photorefractive response time) as compared to the photorefractive two-beam coupling scheme and guarantees the elimination of forerunners. The delay of long puls…

research product

Strong lowering of the mirrorless optical oscillation threshold by angular mismatches for nonlocal photorefractive nonlinearity.

We show that the introduction of an angular mismatch for the pump waves results, in the case of nonlocal photorefractive nonlinearity, in a strong almost twofold decrease of the threshold value of the coupling strength for the mirrorless optical oscillation. This surprising feature will lead to a strong modification of the threshold and near-threshold behavior of a vast variety of optical oscillators based on the photorefractive phase conjugation and involving finite-size light beams.

research product

Nonlinear pulse deceleration using photorefractive four-wave mixing

We investigate the possibilities of the backward four-wave coupling based on the nonlocal photorefractive response for the nonlinear deceleration of light pulses. The presence of an additional external variable parameter—the pump intensity ratio—allows to improve the output characteristics of the decelerated pulses compared to those typical of the two-wave coupling. In particular, large delay times of the output pulses can be achieved without their strong amplification. This positive distinctive feature of the pulse deceleration occurs far from threshold of the mirrorless optical oscillation.

research product

Dynamics of four-wave-mixing oscillators with quasi-phase-matching

The effect of pump-wave misalignment on the oscillation spectra of a semilinear photorefractive oscillator is studied numerically and compared with the results of experiments performed with ${\text{BaTiO}}_{3}:\text{Co}$ and ${\text{KNbO}}_{3}:\text{Ag},\text{Fe}$ crystals.

research product

Instability of single-frequency operation in semilinear photorefractive coherent oscillators.

The transition of the single-frequency oscillation of a semilinear photorefractive coherent oscillator for sufficiently large coupling strengths into two-frequency oscillation is predicted and is observed experimentally. The critical value of the coupling strength at which the bifurcation occurs is a function of pump intensity ratio and cavity losses. The supercritical bifurcation in the oscillation spectrum is analogous to the second-order phase transition.

research product

Supplementary optical phase transition in photorefractive coherent oscillator

The semilinear photorefractive coherent oscillator with two counterpropagating pump waves may exhibit two optical phase transitions: one from a disordered state of wide-angle photorefractive scattering into a high-ordered state with the immobile photorefractive grating and the other one from the state with immobile grating into the state with two moving photorefractive gratings. We show, both experimentally and from calculations, that two these phase transitions are the second-order phase transitions.

research product

Semilinear photorefractive oscillator with reflection gratings

We present results of calculation of the steady-state output characteristics for a semilinear photorefractive oscillator pumped with two independent counterpropagating waves when the reflection grating is operative and compare them with measurements made with a BaTiO3:Co.

research product

Polarization backward-wave four-wave mixing in BaTiO_3:Fe using the photovoltaic effect

We report the first study to our knowledge of polarization backward-wave four-wave mixing in a BaTiO3:Fe crystal and compare the results of our measurements with the calculations performed within the model of photovoltaic charge transport. Two identically polarized pump waves and one orthogonally polarized signal wave are sent to a sample in a plane normal to the crystal’s C axis; a phase-conjugate wave with polarization identical to that of the signal wave is generated. With a 2-mm-thick sample a phase-conjugate reflectivity Rpc≈0.01 is reached; for a 1-cm-thick sample, amplified reflection should be possible.

research product

Photorefractive amplifier-converter and coherent oscillator with nonexponential gain

For some parametric interactions with identically zero exponential gain for the signal wave the intensity of the idler wave can grow as a second power of the propagation coordinate. Such an amplification is revealed for the parametric mixing of four copropagating waves in BaTiO3; two of them are ordinarily polarized and the two others are extraordinarily polarized. This mixing is used to build up a coherent oscillator. A reasonable qualitative agreement of the experimental results with the calculated data is demonstrated.

research product

Selective growth and optical properties of sputtered BaTiO3films

we report the growth of BaTiO 3 thin films by standard Radio Frequency sputtering. Without any in situ or post annealing, these polycristalline films are oriented relative to the substrate even when it is amorphous. We show that this preferential orientation may be monitored using a DC Bias during the film growth. At room temperature, cubic films of (100) and (110) orientations have been achieved, on fused silica substrate. Some optical waveguiding properties of these films have been studied. The resulting film index is 2.26 and the optical step index at the substrate interface is sharp. This allows the use of standard RF sputtering techniques to monitor oriented BaTiO 3 films for linear op…

research product

Slowing down of light pulses using backward-wave four-wave mixing with local response

The slowing down of light pulses is achieved using backward-wave four-wave mixing in a medium with local response. A Bi12TiO20 crystal with an external dc field is used in the experiment as a proof-of-concept material. The delay and shape transformation of output pulses are studied and compared for the transmitted and phase conjugate channels. It is shown that the phase conjugate pulse achieves a longer delay under typical experimental conditions with equal intensities of the pump beams. This advantage of the phase conjugate beam is especially pronounced for short pulses with half-widths smaller than the response time of the medium. The agreement of the experimental results with numerical c…

research product

Modeling of the photorefractive nonlinear response in Sn_2P_2S_6 crystals

We develop a theory of the photorefractive nonlinear response for Sn2P2S6 crystals. The theory incorporates two types of charge carrier (optically active and passive), provides explicit expressions for the characteristic buildup-relaxation rates and gain factors, explains naturally a big variety of accumulated experimental data, and facilitates characterization-optimization of this important nonlinear material.

research product

Two-wave mixing at 854 nm in BaTiO3:Rh planar waveguide implanted with He+

Abstract Guided waves at 854 nm are observed in a BaTiO 3 :Rh waveguide fabricated by the technique of ion-beam implantation. The photorefractive interaction between two guided modes is demonstrated and characterized. The experiments reveal that the gain direction is reversed in the guiding layer in comparison with that in the bulk. A maximum gain of 24 cm −1 is achieved.

research product

Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy

Abstract We report on the generation of multiple-octave supercontinuum laser source spanning from 0.5 μm to 11 μm induced by multi-filamentation in a ZnSe crystal. The generated supercontinuum is both spatially and spectrally characterized. It is then exploited in a proof-of-principle experiment for methane spectroscopy measurements by means of the supercontinuum absorption spectroscopy technique. The entire absorption spectrum is successfully recorded within the whole spectral bandwidth of the supercontinuum. Experimental results are in fairly good agreement with the HITRAN database, confirming the reliability and stability over several hours of the generated supercontinuum.

research product

Photorefractive “camera obscura”

Abstract We demonstrate a novel scheme for lensless image formation which combines the properties of an amplifying dynamic hologram and a pinhole camera. The scheme is realized on the base of a SPS:Sb1% photorefractive crystal working at 633 nm.

research product

Multivalued solutions for the output intensity of a semilinear photorefractive oscillator and stability analysis

The analysis of pump-ratio dependences of the output intensity for a semilinear photorefractive coherent oscillator reveals two domains of multivalued solutions for sufficiently large coupling strength ensured by the crystal. We show that even in a strictly degenerate case the nonzero output intensity can be reached in a broad range of pump ratios r from 10−6 to infinity, including the interval where both pump intensities coincide or are very close to each other. This does not contradict the existence of the known gap in the oscillation threshold near the equal intensities of two pump waves: in this particular region the oscillation is not self-starting. The output intensities for frequency…

research product

Absolute instability in backward wave four-wave mixing: spatial effects

The spatial distribution of new beams generated above the threshold of absolute instability of two counterpropagating incoherent light waves is studied and compared with the results of calculation.

research product

Photorefractive and photochromic effects in Sn2P2S6 at various temperatures

Abstract Photochromic effect in nominally pure and doped Sn 2 P 2 S 6 photorefractive crystals is investigated in the temperature range 120–310 K. This effect determines a mechanism of the amplitude hologram formation at low temperatures, and we show that a competition between the photorefractive (phase) and the amplitude gratings occurs at increasing temperature.

research product

Parametric coherent oscillation with feedback via an orthogonally polarized wave

Coherent light amplification with photorefractive crystals may be a consequence of several frequency degenerate (or nearly degenerate) processes of nonlinear wave mixing : It appears for two- beam coupling in the crystals with diffusion-driven charge transport [1] or transport via circular photovoltaic currents [2].

research product

Self-pumped phase conjugation in a BaTiO3:Rh waveguide

We present a self-pumped phase conjugator originated by self-bending of the incident beam at λ = 515 nm in a BaTiO3:Rh waveguide elaborated by three successive He+ ion implantations. Phase conjugate reflectivity reached is 28 %.

research product

Dynamique d'un oscillateur photoréfractif : instabilités et analogie avec la loi de Curie-Weiss

La dynamique et l'etat stationnaire du faisceau issu d'une cavite oscillante comprenant un cristal non-lineaire de titanate de baryum utilise en tant que miroir a conjugaison de phase sont etudies. Le parametre du systeme etant le gain du milieu non-lineaire, les dependances de l'intensite de l'oscillation et de l'inverse du temps de reponse sont similaires aux lois de Curie en physique du solide.

research product

Filamentation-induced spectral broadening and pulse shortening of infrared pulses in Tellurite glass

Abstract Filamentation of infrared femtosecond pulses in Tellurite glass is reported, leading to the generation of a supercontinuum generation spanning from the visible up to 4 μm. The angular distribution of the supercontinuum shows clear evidence of conical waves generation, in particular, in the visible region. Moreover, taking advantage of the spatio-temporal self-focusing effect occurring in the Tellurite glass, a twofold pulse shortening is demonstrated. Tellurite glass appears as a very convenient, versatile and promising medium for femtosecond nonlinear optics in the infrared region.

research product

Optical hysteresis in a semilinear photorefractive coherent oscillator

International audience; High contrast optical bistability is found experimentally in the pump-ratio dependences of the output intensity of a semilinear photorefractive coherent oscillator with two counterpropagating pump waves. The data are in qualitative agreement with the results of calculation.

research product

Photorefractive detection of antiparallel ferroelectric domains in BaTiO 3 and BaTiO 3 :Co crystals

An all-optical method involving one coherent beam of light and based on photorefractive wave mixing is used to reveal antiparallel ferroelectric domains in one pure, and two cobalt-doped, barium titanate crystals (BaTiO 3 ). Rod-shaped domains with square cross sections are revealed.

research product

Phase Conjugation in BaTiO/sub 3/ Using Orthogonally Polarized Light Waves

research product

Slowdown and speedup of light pulses using the self-compensating photorefractive response

We study theoretically the effects of pulse slowdown and speedup in ferroelectric Sn2P2S6 possessing a self-compensating photorefractive response. It is shown that both these effects can be implemented in one sample for sufficiently large values of the coupling strength. In contrast to other types of the photorefractive response (local and nonlocal), the output pulses do not suffer from strong spatial amplification and broadening.

research product

Manifestation of Curie-Weiss law for optical phase transition

Considerable slowing down is observed for both the temporal development of the coherent oscillation slightly above the threshold and the refractive index grating decay slightly below the threshold for a semilinear photorefractive oscillator with two counter-propagating pump waves. It is shown that in the vicinity of the threshold the reciprocal characteristic time is a linear function of deviation from the threshold coupling strength. This behaviour is similar to an empirical Curie–Weiss law and points to the analogy of the oscillation threshold to a second-order phase transition.

research product

Two frequency oscillation of a photorefractive oscillator as a perturbation of the mirrorless oscillation

We consider the properties of the non-degenerate two frequency regime of oscillation of the semi-linear photorefractive oscillator and analyze its relation with the mirrorless oscillation. We consider the oscillator with or without a frequency shifted feedback by a vibrating mirror. This study shows that these two apparently different phenomena are closely related. We conclude from the obtained results that the two frequency oscillation can be considered as a perturbation of the mirrorless oscillation.

research product

Four-wave-mixing coherent oscillator with frequency shifted feedback and misaligned pump waves.

The effect of the pump waves misalignment on the oscillation spectra and oscillation intensity of a semilinear photorefractive oscillator is studied numerically and compared with the results of the experiment performed with a KNbO3:Fe,Ag crystal.

research product

Energy leaks through the optical barrier created by H+ implantation in BaTiO3 and LiNbO3 planar waveguides

Abstract The energy leaks through the index barrier created by the proton implantation process are put in evidence in planar optical waveguides made in BaTiO 3 and LiNbO 3 substrates. The selective detection of the light emerging from the guiding region permits to measure the optical attenuation of the guided wave. The results obtained on mono or twice implanted LiNbO 3 and BaTiO 3 waveguides are presented and discussed. It is shown that the light confinement is better in BaTiO 3 than in LiNbO 3 .

research product