0000000000147041

AUTHOR

F. Hillmer

Vortex dynamics in Bi2Sr2CaCu2O8-thin films in the presence of columnar defects

With heavy ion irradiation we create continous amorphous columnar defects in Bi2Sr2CaCu2O8-thin films. With regard to a reliable comparison of irradiation effects three of four identical striplines on the same samples were exposed to different irradiation procedures. We performed irradiations as well parallel as under different angles with respect to the film $$\vec c$$ -axis. Beside an enlarged normal state resistivity after irradiation the films suffer a Tc-reduction proportional to the volume of the damaged material. The activation energy ascertained from resistive transitions shows best enhancement for magnetic field values close to the matching field. Measurements of the transport crit…

research product

Heavy ion induced columnar defects: a sensitive probe for the 2D/3D behaviour of vortex matter in high-temperature superconductors

Abstract Heavy ion irradiation is used to create columnar defects in high-temperature superconductors (HTS). The heavy ion induced defects are not only very well controlled in shape and density, but also in the direction of the tracks with respect to the crystallographic c-axis. Pinning of the flux lines as a function of magnetic field orientation then becomes dependent on vortex dimensionality. The two-dimensional (2D)/three-dimensional (3D) behaviour of flux lines was investigated in the highly anisotropic Bi-based superconducting oxide. Results obtained from transport current measurements with epitaxial films, measurements with small single crystals in flux transformer geometry and muon …

research product

Vortex-liquid entanglement inBi2Sr2CaCu2O8+δfilms in the presence of quenched disorder

We have investigated the thermally activated behavior of the in-plane electrical resistivity of ${\mathrm{Bi}}_{2}{\mathrm{Sr}}_{2}{\mathrm{CaCu}}_{2}{\mathrm{O}}_{8+\mathrm{\ensuremath{\delta}}}$ films for magnetic fields $Bl~{10}^{4}\mathrm{G}$ applied parallel to the $c$ axis. The activation energy in the vortex-liquid state changes suddenly at a crossover field ${B}_{\mathrm{cr}}.$ The anisotropy reduction generated by oxygen annealing leads to the increase of the crossover field. For $Bl{B}_{\mathrm{cr}},$ the activation energy $U$ is weakly magnetic-field dependent. For $Bg{B}_{\mathrm{cr}},$ $U(B,T)\ensuremath{\sim}(1\ensuremath{-}{T/T}_{c0}{)/B}^{1/2},$ which corresponds to an entan…

research product

Flux Pinning by Columnar Defects in Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub>-Thin Films

research product

Absence of correlated flux pinning by columnar defects in irradiated epitaxial Bi2Sr2CaCu2O8 thin films

Abstract Using heavy-ion irradiation, we produced columnar defects of different density and orientation in epitaxial Bi 2 Sr 2 CaCu 2 O 8 thin films. Although this increases the normal state resistivity and the critical temperature is reduced proportionally to the volume fraction of damaged material, pinning-related quantities like critical current density, activation energy and depinning field are enhanced in external magnetic fields. Transport measurements in dependence of the magnetic field and its orientation consistently indicate two-dimensional pinning of pancake vortices at the columnar defects. We observe the absence of correlated flux pinning by columnar defects and compare to heav…

research product