0000000000147224

AUTHOR

Antonio Diego Lozano-gorrín

showing 3 related works from this author

Crystal growth and structural remarks on malonate-based lanthanide coordination polymers

2016

The synthesis, structural characterization and thermal study of new coordination polymers (CPs) of formula [Ln2(mal)3(H2O)5]·2H2O [Ln = Ho (1·2H2O), Tb (1a), Dy (1b), Er (1c) and Yb (1d); mal = malonate], [Ln2(mal)3(H2O)6] [Ln = Sm (2) and Ce (2a)], [Ce2(mal)3(H2O)6]·2H2O (3·2H2O) and [Ce2(mal)3(H2O)3]·2H2O (4·2H2O) are presented. Complexes 1–4 have been also characterized by single crystal X-ray diffraction. The structure of 2 was previously reported (Elsegood, M. R. J., Husain, S., Private Communication, 2014) and it is very close to that of 3. In the light of these results and those previously reported in the literature for malonate-containing lanthanide(III) complexes, a detailed overvi…

Lanthanidechemistry.chemical_classificationMaterials science010405 organic chemistryHydrogen bondSupramolecular chemistryCrystal growthGeneral ChemistryCrystal structurePolymer010402 general chemistryCondensed Matter Physics01 natural sciences0104 chemical scienceschemistry.chemical_compoundCrystallographyMalonatechemistryGeneral Materials ScienceSingle crystalCrystEngComm
researchProduct

Lanthanide-doped Y3Ga5O12 garnets for nanoheating and nanothermometry in the first biological window

2018

Abstract Absorption and luminescence spectra in the first biological window of Nd3+ single-doped and Er3+-Yb3+ co-doped Y3Ga5O12 nano-garnets have been studied to evaluate their potential use as simultaneous optical nanoheaters and nanothermometers in biomedicine. Nd3+-doped nano-garnets uses the 808 nm laser radiation, resonant with the largest absorption peak of the 4I9/2 → 4F5/2 transition, for both heating the nanoparticle and populating the 4F3/2 emitting level. Changes in the relative intensities of different emission peaks between Stark levels of the 4F3/2 (R1,2)→4I9/2 (Z1-5) transition can be directly related to the temperature of the nano-garnet. On the other hand, the Yb3+/Er3+com…

LanthanideMaterials scienceOrganic ChemistryDopingNanoparticle02 engineering and technologyRadiation010402 general chemistry021001 nanoscience & nanotechnologyLaser01 natural sciencesAtomic and Molecular Physics and OpticsPhoton upconversion0104 chemical sciencesElectronic Optical and Magnetic MaterialsIonlaw.inventionInorganic ChemistrylawElectrical and Electronic EngineeringPhysical and Theoretical ChemistryAtomic physics0210 nano-technologyAbsorption (electromagnetic radiation)SpectroscopyOptical Materials
researchProduct

Abiotic versus biotic iron mineral transformation studied by a miniaturized backscattering Mössbauer spectrometer (MIMOS II), X-ray diffraction and R…

2017

Abstract Searching for biomarkers or signatures of microbial transformations of minerals is a critical aspect for determining how life evolved on Earth, and whether or not life may have existed in other planets, including Mars. In order to solve such questions, several missions to Mars have sought to determine the geochemistry and mineralogy on the Martian surface. This research includes the two miniaturized Mossbauer spectrometers (MIMOS II) on board the Mars Exploration Rovers Spirit and Opportunity, which have detected a variety of iron minerals on Mars, including magnetite (Fe2+Fe3+2O4) and goethite (α-FeO(OH)). On Earth, both minerals can derive from microbiological activity (e.g. thro…

GoethiteMineral010504 meteorology & atmospheric sciencesChemistryMineralogyAstronomy and AstrophysicsContext (language use)Mars Exploration Program01 natural scienceschemistry.chemical_compoundFerrihydriteSpace and Planetary ScienceMartian surfacevisual_art0103 physical sciencesMössbauer spectroscopyvisual_art.visual_art_medium010303 astronomy & astrophysics0105 earth and related environmental sciencesMagnetiteIcarus
researchProduct