0000000000147814
AUTHOR
R. Lo Franco
Generating and Revealing a Quantum Superposition of Electromagnetic Field Binomial States in a Cavity
We introduce the $N$-photon quantum superposition of two orthogonal generalized binomial states of electromagnetic field. We then propose, using resonant atom-cavity interactions, non-conditional schemes to generate and reveal such a quantum superposition for the two-photon case in a single-mode high-$Q$ cavity. We finally discuss the implementation of the proposed schemes.
Enabling quantum non-Markovian dynamics by injection of classical colored noise
The non-Markovian nature of quantum systems recently turned to be a key subject for investigations on open quantum system dynamics. Many studies, from its theoretical grounding to its usefulness as a resource for quantum information processing and experimental demonstrations, have been reported in the literature. Typically, in these studies, a structured reservoir is required to make non-Markovian dynamics emerge. Here, we investigate the dynamics of a qubit interacting with a bosonic bath and under the injection of a classical stochastic colored noise. A canonical Lindblad-like master equation for the system is derived by using the stochastic wave function formalism. Then, the non-Markovia…
Dynamics and extraction of quantum discord in a multipartite open system
We consider a multipartite system consisting of two noninteracting qubits each embedded in a single-mode leaky cavity, in turn connected to an external bosonic reservoir. Initially, we take the two qubits in an entangled state while the cavities and the reservoirs have zero photons. We investigate, in this six-partite quantum system, the transfer of quantum discord from the qubits to the cavities and reservoirs. We show that this transfer occurs also when the cavities are not entangled. Moreover, we discuss how quantum discord can be extracted from the cavities and transferred to distant systems by traveling leaking photons, using the input-output theory.
Correspondence between generalized binomial field states and coherent atomic states
We show that the N-photon generalized binomial states of electromagnetic field may be put in a bijective mapping with the coherent atomic states of N two-level atoms. We exploit this correspondence to simply obtain both known and new properties of the N-photon generalized binomial states. In particular, an over-complete basis of these binomial states and an orthonormal basis are obtained. Finally, the squeezing properties of generalized binomial state are analyzed.
Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling
In this paper we study how to preserve entanglement and nonlocality under dephasing produced by classical noise with large low-frequency components, as $1/f$ noise, by Dynamical Decoupling techniques. We first show that quantifiers of entanglement and nonlocality satisfy a closed relation valid for two independent qubits locally coupled to a generic environment under pure dephasing and starting from a general class of initial states. This result allows to assess the efficiency of pulse-based dynamical decoupling for protecting nonlocal quantum correlations between two qubits subject to pure-dephasing local random telegraph and $1/f$-noise. We investigate the efficiency of an "entanglement m…
Revival of quantum correlations without system-environment back-action
Revivals of quantum correlations have often been explained in terms of back-action on quantum systems by their quantum environment(s). Here we consider a system of two independently evolving qubits, each locally interacting with a classical random external field. The environments of the qubits are also independent, and there is no back-action on the qubits. Nevertheless, entanglement, quantum discord and classical correlations between the two qubits may revive in this model. We explain the revivals in terms of correlations in a classical-quantum state of the environments and the qubits. Although classical states cannot store entanglement on their own, they can play a role in storing and rev…
Non-markovian effects on the dynamics of entanglement.
A procedure that allows to obtain the dynamics of $N$ independent bodies each locally interacting with its own reservoir is presented. It relies on the knowledge of single body dynamics and it is valid for any form of environment noise. It is then applied to the study of non-Markovian dynamics of two independent qubits, each locally interacting with a zero temperature reservoir. It is shown that, although no interaction is present or mediated between the qubits, there is a revival of their entanglement, after a finite period of time of its complete disappearance.
Single-shot generation and detection of a two-photon generalized binomial state in a cavity
A "quasi-deterministic" scheme to generate a two-photon generalized binomial state in a single-mode high-Q cavity is proposed. We also suggest a single-shot scheme to measure the generated state based on a probe two-level atom that "reads" the cavity field. The possibility of implementing the schemes is discussed.
Bell's inequality violation for entangled generalized Bernoulli states in two spatially separate cavities
We consider the entanglement of orthogonal generalized Bernoulli states in two separate single-mode high-$Q$ cavities. The expectation values and the correlations of the electric field in the cavities are obtained. We then define, in each cavity, a dichotomic operator expressible in terms of the field states which can be, in principle, experimentally measured by a probe atom that ``reads'' the field. Using the quantum correlations of couples of these operators, we construct a Bell's inequality which is shown to be violated for a wide range of the degree of entanglement and which can be tested in a simple way. Thus the cavity fields directly show quantum non-local properties. A scheme is als…
Entanglement degradation in the solid state: Interplay of adiabatic and quantum noise
We study entanglement degradation of two non-interacting qubits subject to independent baths with broadband spectra typical of solid state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility to implement on-chip both local and entangling operations is briefly discussed.
Nonlocal properties of entangled two-photon generalized binomial states in two separate cavities
We consider entangled two-photon generalized binomial states of the electromagnetic field in two separate cavities. The nonlocal properties of this entangled field state are analyzed by studying the electric field correlations between the two cavities. A Bell's inequality violation is obtained using an appropriate dichotomic cavity operator, that is in principle measurable.
Dynamics of geometric and entropic quantifiers of correlations in open quantum systems
We extend the Hilbert-Schmidt (square norm) distance, previously used to define the geometric quantum discord, to define also geometric quantifiers of total and classical correlations. We then compare the dynamics of geometric and entropic quantifiers of the different kinds of correlations in a non-Markovian open two-qubit system under local dephasing. We find that qualitative differences occur only for quantum discords. This is taken to imply that geometric and entropic discords are not, in general, equivalent in describing the dynamics of quantum correlations. We then show that also geometric and entropic quantifiers of total correlations present qualitative disagreements in the state spa…
Entanglement dynamics of two independent qubits in environments with and without memory
A procedure to obtain the dynamics of $N$ independent qudits ($d$-level systems) each interacting with its own reservoir, for any arbitrary initial state, is presented. This is then applied to study the dynamics of the entanglement of two qubits, initially in an extended Werner-like mixed state with each of them in a zero temperature non-Markovian environment. The dependence of the entanglement dynamics on the purity and degree of entanglement of the initial states and on the amount of non-Markovianity is also given. This extends the previous work about non-Markovian effects on the two-qubit entanglement dynamics for initial Bell-like states [B. Bellomo \textit{et al.}, Phys. Rev. Lett. \te…
Recovering entanglement by local operations
We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system state by introducing the concept of "hidden" entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We al…
Hidden entanglement, system-environment information flow and non-Markovianity
It is known that entanglement dynamics of two noninteracting qubits, locally subjected to classical environments, may exhibit revivals. A simple explanation of this phenomenon may be provided by using the concept of hidden entanglement, which signals the presence of entanglement that may be recovered without the help of nonlocal operations. Here we discuss the link between hidden entanglement and the (non-Markovian) flow of classical information between the system and the environment.
Simple non-Markovian microscopic models for the depolarizing channel of a single qubit
The archetypal one-qubit noisy channels ---depolarizing, phase-damping and amplitude-damping channels--- describe both Markovian and non-Markovian evolution. Simple microscopic models for the depolarizing channel, both classical and quantum, are considered. Microscopic models which describe phase damping and amplitude damping channels are briefly reviewed.
DECAY OF NONLOCALITY DUE TO ADIABATIC AND QUANTUM NOISE IN THE SOLID STATE
We study the decay of quantum nonlocality, identified by the violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality, for two noninteracting Josephson qubits subject to independent baths with broadband spectra typical of solid state nanodevices. The bath noise can be separated in an adiabatic (low-frequency) and in a quantum (high-frequency) part. We point out the qualitative different effects on quantum nonlocal correlations induced by adiabatic and quantum noise. A quantitaive analysis is performed for typical noise figures in Josephson systems. Finally we compare, for this system, the dynamics of nonlocal correlations and of entanglement.