0000000000147904

AUTHOR

B. S. Cooper

Resonance ionization schemes for high resolution and high efficiency studies of exotic nuclei at the CRIS experiment

© 2019 This paper presents an overview of recent resonance ionization schemes used at the Collinear Resonance Ionization Spectroscopy (CRIS) setup located at ISOLDE, CERN. The developments needed to reach high spectral resolution and efficiency will be discussed. Besides laser ionization efficiency and high resolving power, experiments on rare isotopes also require low-background conditions. Ongoing developments that aim to deal with beam-related sources of background are presented. ispartof: Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials And Atoms vol:463 pages:398-402 ispartof: location:SWITZERLAND, CERN, Geneva status: published

research product

A compact linear Paul trap cooler buncher for CRIS

A gas-filled linear Paul trap for the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at ISOLDE, CERN is currently under development. The trap is designed to accept beam from both ISOLDE target stations and the CRIS stable ion source. The motivation for the project along with the current design, simulations and future plans, will be outlined. peerReviewed

research product

Tin resonance-ionization schemes for atomic- And nuclear-structure studies

This paper presents high-precision spectroscopic measurements of atomic tin using five different resonance-ionization schemes performed with the collinear resonance-ionization spectroscopy technique. Isotope shifts were measured for the stable tin isotopes from the $5{s}^{2}5{p}^{2}\phantom{\rule{0.28em}{0ex}}^{3}{P}_{0,1,2}$ and ${}^{1}{S}_{0}$ to the $5{s}^{2}5p6s\phantom{\rule{0.28em}{0ex}}^{1}{P}_{1},^{3}{P}_{1,2}$ and $5{s}^{2}5p7s{\phantom{\rule{0.28em}{0ex}}}^{1}{P}_{1}$ atomic levels. The magnetic dipole hyperfine constants ${A}_{\mathrm{hf}}$ have been extracted for six atomic levels with electron angular momentum $Jg0$ from the hyperfine structures of nuclear spin $I=1/2$ tin isot…

research product

Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32

Nuclear charge radii are sensitive probes of different aspects of the nucleon-nucleon interaction and the bulk properties of nuclear matter; thus, they provide a stringent test and challenge for nuclear theory. The calcium region has been of particular interest, as experimental evidence has suggested a new magic number at $N = 32$ [1-3], while the unexpectedly large increases in the charge radii [4,5] open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with $\beta$-decay detection, we were able to extend the charge radii measurement of potassium ($Z =19$) isotopes up to the exotic $^{52}$K ($t_{1…

research product

Spectroscopy of short-lived radioactive molecules

Molecular spectroscopy offers opportunities for the exploration of the fundamental laws of nature and the search for new particle physics beyond the standard model1–4. Radioactive molecules—in which one or more of the atoms possesses a radioactive nucleus—can contain heavy and deformed nuclei, offering high sensitivity for investigating parity- and time-reversal-violation effects5,6. Radium monofluoride, RaF, is of particular interest because it is predicted to have an electronic structure appropriate for laser cooling6, thus paving the way for its use in high-precision spectroscopic studies. Furthermore, the effects of symmetry-violating nuclear moments are strongly enhanced5,7–9 in molecu…

research product

Isotope Shifts of Radium Monofluoride Molecules

Isotope shifts of $^{223-226,228}$Ra$^{19}$F were measured for different vibrational levels in the electronic transition $A^{2}{}{\Pi}_{1/2}\leftarrow X^{2}{}{\Sigma}^{+}$. The observed isotope shifts demonstrate the particularly high sensitivity of radium monofluoride to nuclear size effects, offering a stringent test of models describing the electronic density within the radium nucleus. Ab initio quantum chemical calculations are in excellent agreement with experimental observations. These results highlight some of the unique opportunities that short-lived molecules could offer in nuclear structure and in fundamental symmetry studies.

research product