0000000000148042

AUTHOR

Gonçal Badenes

Increased conductivity of a hole transport layer due to oxidation by a molecular nanomagnet

Thin film transistors based on polyarylamine poly?N,N?-diphenyl-N,N ?bis?4-hexylphenyl?- ?1,1?biphenyl?-4,4?-diamine ?pTPD? were fabricated using spin coating in order to measure the mobility of pTPD upon oxidation. Partially oxidized pTPD with a molecular magnetic cluster showed an increase in mobility of over two orders of magnitude. A transition in the mobility of pTPD upon doping could also be observed by the presence of a maximum obtained for a given oxidant ratio and subsequent decrease for a higher ratio. Such result agrees well with a previously reported model based on the combined effect of dipolar broadening of the density of states and transport manifold filling. Peer Reviewed

research product

Improving the efficiency of light-emitting diode based on a thiophene polymer containing a cyano group

Abstract We report on the overall improvement of a single layer organic light-emitting diode device based on poly{[3-hethylthiophene]-co-3-[2-( p -cyano-phenoxy)ethyl]thiophene} or namely PTOPhCN. This polymer was recently developed by adding a cyano group as a side-chain substituent of the thiophenic backbone onto the main polymer chain and showed promising results for light-emitting diode devices. Using an improved device layout, bright red electroluminescence was obtained at 4 V and showed a luminance of about 400 cd/m 2 at 8 V with current densities in the order of 6000 A/m 2 .

research product