A probabilistic estimation and prediction technique for dynamic continuous social science models: The evolution of the attitude of the Basque Country population towards ETA as a case study
In this paper, a computational technique to deal with uncertainty in dynamic continuous models in Social Sciences is presented.Considering data from surveys,the method consists of determining the probability distribution of the survey output and this allows to sample data and fit the model to the sampled data using a goodness-of-fit criterion based the χ2-test. Taking the fitted parameters that were not rejected by the χ2-test, substituting them into the model and computing their outputs, 95% confidence intervals in each time instant capturing the uncertainty of the survey data (probabilistic estimation) is built. Using the same set of obtained model parameters, a prediction over …