The Hierarchical Mixed Rural Postman Problem: Polyhedral analysis and a branch-and-cut algorithm
[EN] The Hierarchical Mixed Rural Postman Problem is defined on a mixed graph where arcs and edges that require a service are divided into clusters' that have to be serviced in a hierarchical order. The problem generalizes the Mixed Rural Postman Problem and thus is NP-hard. In this paper, we provide a polyhedral analysis of the problem and propose a branch-and-cut algorithm for its solution based on the introduced classes of valid inequalities. Extensive computational experiments are reported on benchmark instances. The exact approach allows to find the optimal solutions in less than 1 hour for instances with up to 999 vertices, 2678 links, and five clusters.
Heuristics for the capacitated modular hub location problem
Abstract In this paper we study the hub location problem, where the goal is to identify an optimal subset of facilities (hubs) to minimize the transportation cost while satisfying certain capacity constraints. In particular, we target the single assignment version, in which each node in the transportation network is assigned to only one hub to route its traffic. We consider here a realistic variant introduced previously, in which the capacity of edges between hubs is increased in a modular way. This reflects the practical situation in air traffic where the number of flights between two locations implies a capacity in terms of number of passengers. Then, the capacity can be increased in a mo…
Heuristics for the Mixed Rural Postman Problem
Abstract The Rural Postman Problem on a mixed graph (MRPP) consists of finding a minimum cost tour which traverses, at least once, the arcs and edges of a given subset of the arcs and edges of the graph. This problem is known to be NP-hard. This paper presents two heuristic approaches to solve it. An approximate algorithm based on the resolution of some flow and matching problems and a tabu search implementation is presented. The tabu search algorithm seeks high-quality tours by means of a switching mechanism in an intensification phase and two levels of diversification. Computational results are presented to assess the merits of the method. Scope and purpose Routing Problems arise in sever…
The Rural Postman Problem on mixed graphs with turn penalties
In this paper we deal with a problem which generalizes the Rural Postman Problem defined on a mixed graph (MRPP). The generalization consists of associating a non-negative penalty to every turn as well as considering the existence of forbidden turns. This new problem fits real-world situations more closely than other simpler problems. A solution tour must traverse all the requiring service arcs and edges of the graph while not making forbidden turns. Its total cost will be the sum of the costs of the traversed arcs and edges together with the penalties associated with the turns done. The Mixed Rural Postman Problem with Turn Penalties (MRPPTP) consists of finding such a tour with a total mi…
Scatter search for an uncapacitated p-hub median problem
Scatter search is a population-based method that has been shown to yield high-quality outcomes for combinatorial optimization problems. It uses strategies for combining solution vectors that have proved effective in a variety of problem settings. In this paper, we present a scatter search implementation for an NP -hard variant of the classic p-hub median problem. Specifically, we tackle the uncapacitated r-allocation p-hub median problem, which consists of minimizing the cost of transporting the traffics between nodes of a network through special facilities that act as transshipment points. This problem has a significant number of applications in practice, such as the design of transportati…
Improved polyhedral descriptions and exact procedures for a broad class of uncapacitated p-hub median problems
Abstract This work focuses on a broad class of uncapacitated p-hub median problems that includes non-stop services and setup costs for the network structures. In order to capture both the single and the multiple allocation patterns as well as any intermediate case of interest, we consider the so-called r-allocation pattern with r denoting the maximum number of hubs a terminal can be allocated to. We start by revisiting an optimization model recently proposed for the problem. For that model, we introduce several families of valid inequalities as well as optimality cuts. Moreover, we consider a relaxation of the model that contains several sets of set packing constraints. This motivates a pol…
Heuristic solutions to the problem of routing school buses with multiple objectives
In this paper we address the problem of routing school buses in a rural area. We approach this problem with a node routing model with multiple objectives that arise from conflicting viewpoints. From the point of view of cost, it is desirable to minimise the number of buses used to transport students from their homes to school and back. From the point of view of service, it is desirable to minimise the time that a given student spends en route. The current literature deals primarily with single-objective problems and the models with multiple objectives typically employ a weighted function to combine the objectives into a single one. We develop a solution procedure that considers each objecti…
The stacker crane problem and the directed general routing problem
[EN] This article deals with the polyhedral description and the resolution of the directed general routing problem (DGRP) and the stacker crane problem (SCP). The DGRP contains a large number of important arc and node routing problems as special cases, including the SCP. Large families of facet-defining inequalities for the DGRP are described and a branch-and-cut algorithm for these problems is presented. Extensive computational experiments over different sets of DGRP and SCP instances are included.
New Heuristic Algorithms for the Windy Rural Postman Problem
[EN] In this paper we deal with the windy rural postman problem. This problem generalizes several important arc routing problems and has interesting real-life applications. Here, we present several heuristics whose study has lead to the design of a scatter search algorithm for the windy rural postman problem. Extensive computational experiments over different sets of instances, with sizes up to 988 nodes and 3952 edges, are also presented. (c) 2004 Elsevier Ltd. All rights reserved.
On the Distance-Constrained Close Enough Arc Routing Problem
[EN] Arc routing problems consist basically of finding one or several routes traversing a given set of arcs and/or edges that must be serviced. The Close-Enough Arc Routing Problem, or Generalized Directed Rural Postman Problem, does not assume that customers are located at specific arcs, but can be serviced by traversing any arc of a given subset. Real-life applications include routing for meter reading, in which a vehicle equipped with a receiver travels a street network. If the vehicle gets within a certain distance of a meter, the receiver collects its data. Therefore, only a few streets which are close enough to the meters need to be traversed. In this paper we study the generalization…
New facets and an enhanced branch-and-cut for the min-max K -vehicles windy rural postman problem
[EN] The min-max windy rural postman problem is a multiple vehicle version of the windy rural postman problem, WRPP, which consists of minimizing the length of the longest route to find a set of balanced routes for the vehicles. In a previous paper, an ILP formulation and a partial polyhedral study were presented, and a preliminary branch-and-cut algorithm that produced some promising computational results was implemented. In this article, we present further results for this problem. We describe several new facet-inducing inequalities obtained from the WRPP, as well as some inequalities that have to be satisfied by any optimal solution. We present an enhanced branch-and-cut algorithm that t…
A branch-and-cut algorithm for the Orienteering Arc Routing Problem
[EN] In arc routing problems, customers are located on arcs, and routes of minimum cost have to be identified. In the Orienteering Arc Routing Problem (OARP),in addition to a set of regular customers that have to be serviced, a set of potential customers is available. From this latter set, customers have to be chosen on the basis of an associated profit. The objective is to find a route servicing the customers which maximize the total profit collected while satisfying a given time limit on the route.In this paper, we describe large families of facet-inducing inequalities for the OARP and present a branch-and-cut algorithm for its solution. The exact algorithm embeds a procedure which builds…
Aesthetic considerations for the min-max K-Windy Rural Postman Problem
[EN] The aesthetic quality of routes is a feature of route planning that is of practical importance, but receives relatively little attention in the literature. Several practitioners have pointed out that the visual appeal of a proposed set of routes can have a strong influence on the willingness of a client to accept or reject a specific routing plan. While some work has analyzed algorithmic performance relative to traditional min-sum or min-max objective functions and aesthetic objective functions, we are not aware of any work that has considered a multi-objective approach. This work considers a multi-objective variant of the Min-Max K-Vehicles Windy Rural Postman Problem, discusses sever…
Preface: Special issue on arc routing problems and other related topics
New Results on the Mixed General Routing Problem
[EN] In this paper, we deal with the polyhedral description and the resolution of the Mixed General Routing Problem. This problem, in which the service activity occurs both at some of the nodes and at some of the arcs and edges of a mixed graph, contains a large number of important arc and node routing problems as special cases. Here, a large family of facet-defining inequalities, the Honeycomb inequalities, is described. Furthermore, a cutting-plane algorithm for this problem that incorporates new separation procedures for the K-C, Regular Path-Bridge, and Honeycomb inequalities is presented. Branch and bound is invoked when the final solution of the cutting-plane procedure is fractional. …
Polyhedral results for a vehicle routing problem
Abstract The Vehicle Routing Problem is a well known, and hard, combinatorial problem, whose polyhedral structure has deserved little attention. In this paper we consider the particular case in which all the demands are equal (since in the general case the associated polytope may be empty). From a known formulation of the problem we obtain the dimension of the corresponding polytope and we study the facetial properties of every inequality in it.
A GRASP heuristic for the mixed Chinese postman problem
Abstract Arc routing problems (ARPs) consist of finding a traversal on a graph satisfying some conditions related to the links of the graph. In the Chinese postman problem (CPP) the aim is to find a minimum cost tour (closed walk) traversing all the links of the graph at least once. Both the Undirected CPP, where all the links are edges that can be traversed in both ways, and the Directed CPP, where all the links are arcs that must be traversed in a specified way, are known to be polynomially solvable. However, if we deal with a mixed graph (having edges and arcs), the problem turns out to be NP -hard. In this paper, we present a heuristic algorithm for this problem, the so-called Mixed CPP…
The facility location problem with capacity transfers
Abstract This paper explores the concept of capacity transfer in the context of capacitated facility location problems. This is accomplished by assuming that facilities with surplus capacity/production can cooperate with those facing shortage by transferring part of that capacity/production. Such a transfer incurs a cost that nonetheless may be compensated by savings both in the installation costs and in the distribution costs. Mixed-integer mathematical programming models are proposed for the problem. A distinction is made between the case in which the triangle inequality holds for the transfer costs and the case in which it does not. We present compact models, which are enhanced with vali…
The Chinese Postman Problem with Load-Dependent Costs
[EN] We introduce an interesting variant of the well-known Chinese postman problem (CPP). While in the CPP the cost of traversing an edge is a constant (equal to its length), in the variant we present here the cost of traversing an edge depends on its length and on the weight of the vehicle at the moment it is traversed. This problem is inspired by the perspective of minimizing pollution in transportation, since the amount of pollution emitted by a vehicle not only depends on the travel distance but also on its load, among other factors. We define the problem, study its computational complexity, provide two mathematical programming formulations, and propose two metaheuristics for its soluti…
Models and solution methods for the uncapacitatedr-allocationp-hub equitable center problem
Hub networks are commonly used in telecommunications and logistics to connect origins to destinations in situations where a direct connection between each origin–destination (o-d) pair is impractical or too costly. Hubs serve as switching points to consolidate and route traffic in order to realize economies of scale. The main decisions associated with hub-network problems include (1) determining the number of hubs (p), (2) selecting the p-nodes in the network that will serve as hubs, (3) allocating non-hub nodes (terminals) to up to r-hubs, and (4) routing the pairwise o-d traffic. Typically, hub location problems include all four decisions while hub allocation problems assume that the valu…
A comparison of two different formulations for Arc Routing Problems on Mixed graphs
[EN] Arc routing problems on mixed graphs have been modelled in the literature either using just one variable per edge or associating to each edge two variables, each one representing its traversal in the corresponding direction. In this paper, and using the mixed general routing problem as an example, we compare theoretical and computationally both formulations as well as the lower bounds obtained from them using Linear Programming based methods. Extensive computational experiments, including some big and newly generated random instances, are presented.
A New Branch-and-Cut Algorithm for the Generalized Directed Rural Postman Problem
The generalized directed rural postman problem, also known as the close-enough arc routing problem, is an arc routing problem with some interesting real-life applications, such as routing for meter reading. In this article we introduce two new formulations for this problem as well as various families of new valid inequalities that are used to design and implement a branch-and-cut algorithm. The computational results obtained on test bed instances from the literature show that this algorithm outperforms the existing exact methods
A Scatter Search Algorithm for the Split Delivery Vehicle Routing Problem
In this chapter we present a metaheuristic procedure constructed for the special case of the Vehicle Routing Problem in which the demands of clients can be split, i.e., any client can be serviced by more than one vehicle. The proposed algorithm, based on the scatter search methodology, produces a feasible solution using the minimum number of vehicles. The quality of the obtained results is comparable to the best results known up to date on a set of instances previously published in the literature.
A Branch-Price-and-Cut Algorithm for the Min-Max k -Vehicle Windy Rural Postman Problem
[EN] The min-max k -vehicles windy rural postman problem consists of minimizing the maximal distance traveled by a vehicle to find a set of balanced routes that jointly service all the required edges in a windy graph. This is a very difficult problem, for which a branch-and-cut algorithm has already been proposed, providing good results when the number of vehicles is small. In this article, we present a branch-price-and-cut method capable of obtaining optimal solutions for this problem when the number of vehicles is larger for the same set of required edges. Extensive computational results on instances from the literature are presented.
Heuristic Solutions for a Class of Stochastic Uncapacitated p-Hub Median Problems
In this work, we propose a heuristic procedure for a stochastic version of the uncapacitated r-allocation p-hub median problem with nonstop services. In particular, we assume that the number of hubs to which a terminal can be allocated is bounded from above by r. Additionally, we consider the possibility of shipping traffic directly between terminals (nonstop services). Uncertainty is associated with the traffic to be shipped between nodes and with the transportation costs. If we assume that such uncertainty can be captured by a finite set of scenarios, each of which with a probability known in advance, it is possible to develop a compact formulation for the deterministic equivalent proble…
Lower bounds and heuristics for the Windy Rural Postman Problem
[EN] In this paper we present several heuristic algorithms and a cutting-plane algorithm for the Windy Rural Postman Problem. This problem contains several important Arc Routing Problems as special cases and has very interesting real-life applications. Extensive computational experiments over different sets of instances are also presented.
Solving the length constrained K-drones rural postman problem
[EN] In this paper we address the Length Constrained K-Drones Rural Postman Problem (LC K-DRPP). This is a continuous optimization problem where a fleet of homogeneous drones have to jointly service (traverse) a set of (curved or straight) lines of a network. Unlike the vehicles in classical arc routing problems, a drone can enter a line through any of its points, service a portion of that line, exit through another of its points, then travel directly to any point on another line, and so on. Moreover, since the range of the drones is restricted, the length of each route is limited by a maximum distance. Some applications for drone arc routing problems include inspection of pipelines, railwa…
An algorithm for the Rural Postman problem on a directed graph
The Directed Rural Postman Problem (DRPP) is a general case of the Chinese Postman Problem where a subset of the set of arcs of a given directed graph is ‘required’ to be traversed at minimum cost. If this subset does not form a weakly connected graph but forms a number of disconnected components the problem is NP-Complete, and is also a generalization of the asymmetric Travelling Salesman Problem. In this paper we present a branch and bound algorithm for the exact solution of the DRPP based on bounds computed from Lagrangean Relaxation (with shortest spanning arborescence sub-problems) and on the fathoming of some of the tree nodes by the solution of minimum cost flow problems. Computation…
Drone arc routing problems
[EN] In this article, we present some drone arc routing problems (Drone ARPs) and study their relation with well-known postman ARPs. Applications for Drone ARPs include traffic monitoring by flying over roadways, infrastructure inspection such as by flying along power transmission lines, pipelines or fences, and surveillance along linear features such as coastlines or territorial borders. Unlike the postmen in traditional ARPs, drones can travel directly between any two points in the plane without following the edges of the network. As a consequence, a drone route may service only part of an edge, with multiple routes being used to cover the entire edge. Thus the Drone ARPs are continuous o…
The min-max close-enough arc routing problem
Abstract Here we introduce the Min-Max Close-Enough Arc Routing Problem, where a fleet of vehicles must serve a set of customers while trying to balance the length of the routes. The vehicles do not need to visit the customers, since they can serve them from a distance by traversing arcs that are “close enough” to the customers. We present two formulations of the problem and propose a branch-and-cut and a branch-and-price algorithm based on the respective formulations. A heuristic algorithm used to provide good upper bounds to the exact procedures is also presented. Extensive computational experiments to compare the performance of the algorithms are carried out.
An ILS-Based Metaheuristic for the Stacker Crane Problem
[EN] In this paper we propose a metaheuristic algorithm for the Stacker Crane Problem. This is an NP-hard arc routing problem whose name derives from the practical problem of operating a crane. Here we present a formulation and a lower bound for this problem and propose a metaheuristic algorithm based on the combination of a Multi-start and an Iterated Local Search procedures. Computational results on a large set of instances are presented.
The periodic rural postman problem with irregular services on mixed graphs
Abstract In this paper, we deal with an extension of the rural postman problem in which some links of a mixed graph must be traversed a given number of times over a time horizon. These links represent entities that must be serviced a specified number of times in some subsets of days (or periods) of the time horizon. The aim is to design a set of minimum-cost tours, one for each day/period of the time horizon, that satisfy the service requirements. We refer to this problem as the periodic rural postman problem with irregular services (PRPP–IS). Some practical applications of the problem can be found in road maintenance operations and road network surveillance, for example. In order to solve …
A branch-and-cut algorithm for the Profitable Windy Rural Postman Problem
[EN] In this paper we study the profitable windy rural postman problem. This is an arc routing problem with profits defined on a windy graph in which there is a profit associated with some of the edges of the graph, consisting of finding a route maximizing the difference between the total profit collected and the total cost. This problem generalizes the rural postman problem and other well-known arc routing problems and has real-life applications, mainly in snow removal operations. We propose here a formulation for the problem and study its associated polyhedron. Several families of facet-inducing inequalities are described and used in the design of a branch-and-cut procedure. The algorithm…
Separating capacity constraints in the CVRP using tabu search
Abstract Branch and Cut methods have shown to be very successful in the resolution of some hard combinatorial optimization problems. The success has been remarkable for the Symmetric Traveling Salesman Problem (TSP). The crucial part in the method is the cutting plane algorithm: the algorithm that looks for valid inequalities that cut off the current nonfeasible linear program (LP) solution. In turn this part relies on a good knowledge of the corresponding polyhedron and our ability to design algorithms that can identify violated valid inequalities. This paper deals with the separation of the capacity constraints for the Capacitated Vehicle Routing Problem (CVRP). Three algorithms are prese…
The General Routing Problem polyhedron: Facets from the RPP and GTSP polyhedra
[EN] In this paper we study the polyhedron associated with the General Routing Problem (GRP). This problem, first introduced by Orloff in 1974, is a generalization of both the Rural Postman Problem (RPP) and the Graphical Traveling Salesman Problem (GTSP) and, thus, is NP -hard. We describe a formulation of the problem such that from every non-trivial facet-inducing inequality for the RPP and GTSP polyhedra, we obtain facet-inducing inequalities for the GRP polyhedron, We describe a new family of facet-inducing inequalities for the GRP, the honeycomb constraints, which seem to be very useful for solving GRP and RPP instances. Finally, new classes of facets obtained by composition of facet-i…
GRASP for the uncapacitated r-allocation p-hub median problem
In this paper we propose a heuristic for the Uncapacitated r-Allocation p-Hub Median Problem. In the classical p-hub location problem, given a set of nodes with pairwise traffic demands, we must select p of them as hub locations and route all traffics through them at a minimum cost. We target here an extension, called the r-allocation p-hub median problem, recently proposed by Yaman [19], in which every node is assigned to r of the p selected hubs (r@?p) and we are restricted to route the traffic of the nodes through their associated r hubs. As it is usual in this type of problems, our method has three phases: location, assignment and routing. Specifically, we propose a heuristic based on t…
An optimal method for the mixed postman problem
The directed profitable rural postman problem with incompatibility constraints
[EN] In this paper, we study a variant of the directed rural postman problem (RPP) where profits are asso- ciated with arcs to be served, and incompatibility constraints may exist between nodes and profitable arcs leaving them. If convenient, some of the incompatibilities can be removed provided that penalties are paid. The problem looks for a tour starting and ending at the depot that maximizes the difference between collected profits and total cost as sum of traveling costs and paid penalties, while satisfying remaining incompatibilities. The problem finds application in the domain of road transportation service, and in particular in the context of horizontal collaboration among carriers …
A New Metaheuristic for the Vehicle Routing Problem with Split Demands
In this paper we present a metaheuristic procedure constructed for the special case of the Vehicle Routing Problem in which the demands of the clients can be split, i.e., any client can be serviced by more than one vehicle. The proposed algorithm, based on the scatter search methodology, produces a feasible solution using the minimum number of vehicles. The results obtained compare with the best results known up to date on a set of instances previously published in the literature.
Formulations and exact algorithms for the distance-constrained generalized directed rural postman problem
[EN] The generalized directed rural postman problem is an arc routing problem with many interesting real-life applications, such as routing for meter reading. In this application, a vehicle with a receiver travels through a series of neighborhoods. If the vehicle gets closer than a certain distance to a meter, the receiver is able to record the gas, water, or electricity consumption. Therefore, the vehicle does not need to traverse every street, but only a few, to get close enough to each meter. We study an extension of this problem in which a fleet of vehicles is available. Given the characteristics of the mentioned application, the vehicles have no capacities but there is a maximum distan…
Some recent contributions to routing and location problems
CORAL 2003, a Conference on Routing and Location, washeld in Puerto de la Cruz (Tenerife, Spain) from February24–26, 2003. A wonderful place, close to the black sand ofthe beach, and a nice temperature welcomed a group ofsenior and young researchers from Canada, England,France, Germany, and Spain. Social activities were alsoprovided and sponsored by the Cabildo Insular de Tenerife(the local government) and TITSA (the public bus transpor-tation company on the island). The conference corre-sponded to the third annual meeting of a research project,funded by the Spanish Ministry of Science and Technology,developing a Decision Support System for Vehicle Routingand Facility Location Problems (SAD…
A matheuristic for the Team Orienteering Arc Routing Problem
In the Team OrienteeringArc Routing Problem (TOARP) the potential customers are located on the arcs of a directed graph and are to be chosen on the basis of an associated profit. A limited fleet of vehicles is available to serve the chosen customers. Each vehicle has to satisfy a maximum route duration constraint. The goal is to maximize the profit of the served customers. We propose a matheuristic for the TOARP and test it on a set of benchmark instances for which the optimal solution or an upper bound is known. The matheuristic finds the optimal solutions on all, except one, instances of one of the four classes of tested instances (with up to 27 vertices and 296 arcs). The average error o…
Who sent the e-mail?
In mid October 2001, a number of lecturers at the University of Valencia received insulting, threatening and anonymous electronic mails. An investigation about this fact is only permitted under very restricted conditions, stipulated by the Spanish law of the Secrecy of Communications. Only one judicial authority is able to lift these restrictions and authorize information to be checked in order to obtain enough evidence to unveil who was responsible for the messages. The authors propose in this paper a study for quantifying the weight of certain evidence with a view to show to the judge that the relevance of the said weight would justify such a measure.
The mixed general routing polyhedron
[EN] In Arc Routing Problems, ARPs, the aim is to find on a graph a minimum cost traversal satisfying some conditions related to the links of the graph. Due to restrictions to traverse some streets in a specified way, most applications of ARPs must be modeled with a mixed graph. Although several exact algorithms have been proposed, no polyhedral investigations have been done for ARPs on a mixed graph. In this paper we deal with the Mixed General Routing Problem which consists of finding a minimum cost traversal of a given link subset and a given vertex subset of a mixed graph. A formulation is given that uses only one variable for each link (edge or arc) of the graph. Some properties of the…
The Capacitated Arc Routing Problem: Lower bounds
In this paper, we consider the Capacitated Arc Routing Problem (CARP), in which a fleet of vehicles, based on a specified vertex (the depot) and with a known capacity Q, must service a subset of the edges of a graph, with minimum total cost and such that the load assigned to each vehicle does not exceed its capacity. New lower bounds are developed for this problem, producing at least as good results as the already existing ones. Three of the proposed lower bounds are obtained from the resolution of a minimum cost perfect matching problem. The fourth one takes into account the vehicle capacity and is computed using a dynamic programming algorithm. Computational results, in which these bounds…
Linear Programming Based Methods for Solving Arc Routing Problems
From the pioneering works of Dantzig, Edmonds and others, polyhedral (i.e. linear programming based) methods have been successfully applied to the resolution of many combinatorial optimization problems. See Junger, Reinelt & Rinaldi (1995) for an excellent survey on this topic. Roughly speaking, the method consists of trying to formulate the problem as a Linear Program and using the existing powerful methods of Linear Programming to solve it.
Arc routing problems: A review of the past, present, and future
[EN] Arc routing problems (ARPs) are defined and introduced. Following a brief history of developments in this area of research, different types of ARPs are described that are currently relevant for study. In addition, particular features of ARPs that are important from a theoretical or practical point of view are discussed. A section on applications describes some of the changes that have occurred from early applications of ARP models to the present day and points the way to emerging topics for study. A final section provides information on libraries and instance repositories for ARPs. The review concludes with some perspectives on future research developments and opportunities for emergin…
The Windy clustered prize-collecting arc-routing problem
This paper introduces the windy clustered prize-collecting arc-routing problem. It is an arc-routing problem where each demand edge is associated with a profit that is collected once if the edge is serviced, independent of the number of times the edge is traversed. It is further required that if a demand edge is serviced, then all the demand edges of its component are also serviced. A mathematical programming formulation is given and some polyhedral results including several facet-defining and valid inequalities are presented. The separation problem for the different families of inequalities is studied. Numerical results from computational experiments are analyzed. © 2011 INFORMS.