0000000000148734
AUTHOR
A. Fellegara
Electrostrictive cross-phase modulation of periodic pulse trains in optical fibers
Electrostriction-induced cross-phase modulation between subsequent bits of a nonreturn-to-zero pulse train in optical fibers leads to nonlinear frequency shifts of opposite sign for the 1’s and the 0’s. Direct experimental measurements of the electrostrictive and Kerr-induced nonlinear phase shift across the bit profiles agree well with the theoretical modeling.
COST 241 intercomparison of nonlinear refractive index measurements in dispersion shifted optical fibres at =1550 nm
COST 241 measurements of the nonlinear refractive index, n/sub 2/, exhibit a large scatter depending on the specific measurement technique. This is largely due to the electrostrictive contribution to the Kerr nonlinearity, as is revealed by the resonant behaviour of n/sub 2/ (with peak values up to 3.9 10/sup -20/ m/sup 2/ W/sup -1/) observed with signal modulation frequencies in the 0.11 GHz range.