0000000000148895
AUTHOR
Sophie Dal Molin
The first unpaired electron placed inside a C3-symmetry P-chirogenic cluster
The Pd(3)(dppm*)(3)(CO)(n+) enantiomers (n = 2 (2), 1 (3)) were prepared either from (R,R)- or (S,S)-P-chirogenic bis(phenyl-m-xylylphosphino)methane (dppm*; 1) and Pd(OAc)(2) in the presence of CF(3)CO(2)H, CO and water (n = 2), and then by reductive electrolysis (n = 1). The stable enantiomeric [Pd(3)((S,S)-dppm*)(3)(CO)](+)˙ (3), is the first C(3)-symmetry radical-cation M-M bonded cluster, therefore the odd electron is delocalized onto the Pd(3) frame within this symmetry. The novel chiral species have been characterized by circular dichroism (CD) of both enantiomers of the Pd(3)(dppm*)(3)(CO)(2+) clusters (2) and by EPR spectroscopy for the Pd(3)((S,S)-dppm*)(3)(CO)(+)˙ paramagnetic co…
Thermal and electrochemically assisted Pd-Cl bond cleavage in the d9-d9 Pd2dppm2Cl2 complex by Pd3 dppm3COn+ clusters (n = 2, 1, 0).
A new aspect of reactivity of the cluster [Pd3(dppm)3(micro3-CO)]n+, ([Pd3]n+, n = 2, 1, 0) with the low-valent metal-metal-bonded Pd2(dppm)2Cl2 dimer (Pd2Cl2) was observed using electrochemical techniques. The direct reaction between [Pd3]2+ and Pd2Cl2 in THF at room temperature leads to the known [Pd3(dppm)3(micro3-CO)(Cl)]+ ([Pd3(Cl)]+) adduct and the monocationic species Pd2(dppm)2Cl+ (very likely as Pd2(dppm)2(Cl)(THF)+, [Pd2Cl]+) as unambiguously demonstrated by UV-vis and 31P NMR spectroscopy. In this case, [Pd3]2+ acts as a strong Lewis acid toward the labile Cl- ion, which weakly dissociates from Pd2Cl2 (i.e., dissociative mechanism). Host-guest interactions between [Pd3]2+ and Pd2…
The Pd3(dppm)3(CO)n clusters (n = 1-,2-); rare cases of anionic palladium species.
Two novel anionic palladium clusters, Pd(3)(dppm)(3)(CO)(n-) (Pd(3)(n); n = 1-,2-) were electrochemically generated from the dicationic cluster Pd(3)(2+) in 0.2 M THF/Bu(4)NPF(6)via two first consecutive reversible 1-electron reductions (Pd(3)(2+) + 1 e(-) ⇌ Pd(3)(+), -0.210, and Pd(3)(+) + 1 e(-) ⇌ Pd(3)(0), -0.470 V vs. SCE) followed by two others at -2.350 (Pd(3)(0) + 1 e(-) ⇌ Pd(3)(1-), reversible) and at -2.690 V vs. SCE (Pd(3)(1-) + 1 e(-) ⇌ Pd(3)(2-), irreversible). The chemical stability and instability, respectively, of the Pd(3)(dppm)(3)(CO)(n-) clusters (Pd(3)(n); n = 1-,2-) at the time scale of the electrochemical experiments were addressed by DFT computations. Indeed, geometry …