0000000000149547

AUTHOR

Raphaël Dodet

showing 2 related works from this author

Carotenoid-based colour of acanthocephalan cystacanths plays no role in host manipulation.

2009

Manipulation by parasites is a catchy concept that has been applied to a large range of phenotypic alterations brought about by parasites in their hosts. It has, for instance, been suggested that the carotenoid-based colour of acanthocephalan cystacanths is adaptive through increasing the conspicuousness of infected intermediate hosts and, hence, their vulnerability to appropriate final hosts such as fish predators. We revisited the evidence in favour of adaptive coloration of acanthocephalan parasites in relation to increased trophic transmission using the crustacean amphipodGammarus pulexand two species of acanthocephalans,Pomphorhynchus laevisandPolymorphus minutus. Both species show car…

[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyFood ChaincolourTroutColorGeneral Biochemistry Genetics and Molecular Biologyhost manipulationPredationAcanthocephalaHost-Parasite InteractionsPomphorhynchus laevisGammarus pulex[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsAmphipodaGeneral Environmental ScienceNegative phototaxisGeneral Immunology and MicrobiologybiologyEcologyIntermediate hostGeneral Medicinebiology.organism_classificationCarotenoidsTroutGammarus pulexPulexPredatory BehaviorFreshwater fishPolymorphus minutusPomphorhynchus laevispredationGeneral Agricultural and Biological SciencesResearch Article
researchProduct

Interspecific differences in carotenoid content and sensitivity to UVB radiation in three acanthocephalan parasites exploiting a common intermediate …

2011

9 pages; International audience; Few endoparasite species are pigmented. Acanthocephalans are an exception however, with several species being characterised by yellow to orange colouration both at the immature (cystacanth) and adult stages. However, the functional and adaptive significance of carotenoid-based colourations in acanthocephalans remains unclear. One possibility is that the carotenoid content of acanthocephalan cystacanths acts as a protective device against ultra-violet radiation (UVR) passing through the translucent cuticle of their crustacean hosts. Indeed, acanthocephalans often bring about behavioural changes in their aquatic intermediate hosts that can increase their expos…

Pigments[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyUltraviolet RaysPomphorhynchusAcanthocephalachemistry.chemical_compoundAstaxanthinBotany[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsAmphipodaCarotenoidchemistry.chemical_classification[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyAdaptive colourbiologyPhotoprotectionIntermediate hostfood and beveragesbiology.organism_classificationCarotenoidsSurvival AnalysisPolymorphusPolymorphusGammarus pulexInfectious DiseaseschemistryPhotoprotectionParasite manipulationParasitologyPomphorhynchus laevisAcanthocephala
researchProduct