0000000000149720

AUTHOR

F. J. Escrihuela

Global constraints on muon-neutrino non-standard interactions

The search for new interactions of neutrinos beyond those of the Standard Model may help to elucidate the mechanism responsible for neutrino masses. Here we combine existing accelerator neutrino data with restrictions coming from a recent atmospheric neutrino data analysis in order to lift parameter degeneracies and improve limits on new interactions of muon neutrinos with quarks. In particular we re-consider the results of the NuTeV experiment in view of a new evaluation of its systematic uncertainties. We find that, although constraints for muon neutrinos are better than those applicable to tau or electron neutrinos, they lie at the few $\times 10^{-2}$ level, not as strong as previously …

research product

Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study

When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix $N$ describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation phases appear in $N$ that could be confused with the standard phase $\delta_{\text{CP}}$ characterizing the three neutrino paradigm. We study the potential of the long-baseline neutrino experiment DUNE in probing CP violation induced by the standard CP phase in the presence of non-unitarity. In order to accomplish this we develop our previous formalism, so as to take into account the neutrino interactions with the medium, important in long baseline…

research product

Constraining nonstandard neutrino-quark interactions with solar, reactor and accelerator data

We present a reanalysis of nonstandard neutrino-down-quark interactions of electron and tau neutrinos using solar, reactor and accelerator data. In addition updating the analysis by including new solar data from SNO phase III and Borexino, as well as new KamLAND data and solar fluxes, a key role is played in our analysis by the combination of these results with the CHARM data. The latter allows us to better constrain the axial and axial-vector electron and tau-neutrino nonstandard interaction parameters characterizing the deviations from the Standard Model predictions.

research product

On the description of non-unitary neutrino mixing

28 pages.- 8 figures.- typos corrected.- modified bounds on non-unitarity parameters.- new figs 3 and 4

research product

Neutrino counting experiments and non-unitarity from LEP and future experiments

Non-unitarity of the neutrino mixing matrix is expected in many scenarios with physics beyond the Standard Model. Motivated by the search for deviations from unitary, we study two neutrino counting observables: the neutrino-antineutrino gamma process and the invisible $Z$ boson decay into neutrinos. We report on new constraints for non-unitarity coming from the first of this observables. We study the potential constraints that future collider experiments will give from the invisible decay of the Z boson, that will be measured with improved precision.

research product