0000000000150068

AUTHOR

Leopoldo Infante

showing 15 related works from this author

A K s -band-selected catalogue of objects in the ALHAMBRA survey

2016

The original ALHAMBRA catalogue contained over 400 000 galaxies selected using a synthetic F814W image, to the magnitude limit AB(F814W) ≈ 24.5. Given the photometric redshift depth of the ALHAMBRA multiband data (〈 z〉 = 0.86) and the approximately I-band selection, there is a noticeable bias against red objects at moderate redshift.We avoid this bias by creating a new catalogue selected in the Ks band. This newly obtained catalogue is certainly shallower in terms of apparent magnitude, but deeper in terms of redshift, with a significant population of red objects at z > 1. We select objects using the Ks band images, which reach an approximate AB magnitude limit Ks ≈ 22. We generate masks an…

PopulationFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsApproxSurveys01 natural sciencesPhotometry (optics)Apparent magnitude0103 physical sciencesobservations [Cosmology]education010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhotometric redshiftPhysicseducation.field_of_study010308 nuclear & particles physicsCosmology: observationsAstronomyGalaxies: evolutionAstronomy and AstrophysicsAB magnitudeevolution [Galaxies]Astrophysics - Astrophysics of GalaxiesGalaxyRedshiftSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Monthly Notices of the Royal Astronomical Society
researchProduct

High redshift galaxies in the ALHAMBRA survey

2015

Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so called dropout technique or Ly-alpha selection. However, the availability of multifilter data allows now replacing the dropout selections by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims. Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing in th…

Physicseducation.field_of_studyPopulationFOS: Physical sciencesSampling (statistics)Astronomy and AstrophysicsContext (language use)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstrophysics - Astrophysics of GalaxiesRedshiftGalaxySpace and Planetary ScienceLimiting magnitudeAstrophysics of Galaxies (astro-ph.GA)Probability distributioneducationAstrophysics::Galaxy AstrophysicsPhotometric redshiftAstronomy & Astrophysics
researchProduct

The ALHAMBRA survey: 2D analysis of the stellar populations in massive early-type galaxies atz< 0.3

2017

Reproduced with permission from Astronomy & Astrophysics

Stellar populationMetallicityAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicselliptical and lenticular cD [Galaxies]01 natural sciencescDPhotometry (optics)0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicsgalaxies: formationgalaxies: elliptical and lenticularSpectroscopy010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics[PHYS]Physics [physics]Physics010308 nuclear & particles physicsphotometry [Galaxies]FísicaAstronomy and Astrophysicsevolution [Galaxies]Astrophysics - Astrophysics of Galaxiesformation [Galaxies]Galaxy2d analysisEarly typeGalaxies: elliptical and lenticular cDgalaxies: photometrySpace and Planetary ScienceSpectral energy distributionAstrophysics::Earth and Planetary Astrophysicsgalaxies: evolution[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & Astrophysics
researchProduct

High redshift galaxies in the ALHAMBRA survey. II. Strengthening the evidence of bright-end excess in UV luminosity functions at 2.5 <= z<= 4.5 by PD…

2018

Context. Knowing the exact shape of the ultraviolet (UV) luminosity function (LF) of high-redshift galaxies is important to understand the star formation history of the early Universe. However, the uncertainties, especially at the faint and bright ends of the LFs, remain significant. Aims. In this paper, we study the UV LF of redshift z = 2:5 4.5 galaxies in 2.38 deg of ALHAMBRA data with I ≤ 24. Thanks to the large area covered by ALHAMBRA, we particularly constrain the bright end of the LF. We also calculate the cosmic variance and the corresponding bias values for our sample and derive their host dark matter halo masses. Methods.We have used a novel methodology based on redshift and magn…

Astrophysics::High Energy Astrophysical PhenomenaContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityhigh-redshift [Galaxies]galaxies: high-redshift0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsLuminosity function (astronomy)Physics[PHYS]Physics [physics]010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsCosmic varianceevolution [Galaxies]Astrophysics - Astrophysics of Galaxiesluminosity function [Galaxies]RedshiftGalaxyDark matter halogalaxies: luminosity functionSpace and Planetary Sciencemass functionMass functiongalaxies: evolution[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The ALHAMBRA survey: B -band luminosity function of quiescent and star-forming galaxies at 0.2 ≤  z  < 1 by PDF analysis

2016

[Aims]: Our goal is to study the evolution of the B-band luminosity function (LF) since z ∼ 1 using ALHAMBRA data. [Methods]: We used the photometric redshift and the I-band selection magnitude probability distribution functions (PDFs) of those ALHAMBRA galaxies with I ≤ 24 mag to compute the posterior LF. We statistically studied quiescent and star-forming galaxies using the template information encoded in the PDFs. The LF covariance matrix in redshift - magnitude - galaxy type space was computed, including the cosmic variance. That was estimated from the intrinsic dispersion of the LF measurements in the 48 ALHAMBRA sub-fields. The uncertainty due to the photometric redshift prior is also…

luminosity function mass function [Galaxies]Galaxies: statisticsAstrophysics::High Energy Astrophysical PhenomenaPopulationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesLuminositystatistics [Galaxies]0103 physical scienceseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhotometric redshiftLuminosity function (astronomy)Physicseducation.field_of_study010308 nuclear & particles physicsGalaxies: luminosity function mass functionGalaxies: evolutionAstronomy and AstrophysicsCosmic varianceB bandevolution [Galaxies]Astrophysics - Astrophysics of GalaxiesRedshiftGalaxy[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]Space and Planetary ScienceHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & Astrophysics
researchProduct

Lyman break and ultraviolet-selected galaxies at z ~ 1 - II. PACS 100μm/160μm FIR detections

2013

In this work, we report the Photodetector Array Camera and Spectrometer (PACS) 100 μm/160 μm detections of a sample of 42 GALEX-selected and far-infrared (FIR)-detected Lyman break galaxies (LBGs) at z ~ 1 located in the Cosmic Evolution Survey (COSMOS) field and analyse their ultraviolet (UV) to FIR properties. The detection of these LBGs in the FIR indicates that they have a dust content high enough so that its emission can be directly detected. According to a spectral energy distribution (SED) fitting with stellar population templates to their UV-to-near-IR observed photometry, PACS-detected LBGs tend to be bigger (Reff ~ 4.1 kpc), more massive [log (M*/M⊙) ~ 10.7], dustier [Es(B - V) ~ …

Stellar populationAstrophysicsgalaxies [Radio continuum]medicine.disease_causestar formation [Galaxies]Physical cosmologyhigh-redshift [Galaxies]galaxies [Infrared]galaxies: high-redshiftmedicineLuminous infrared galaxyPhysicsStar formationinfrared: galaxieAstronomyAstronomy and Astrophysicsevolution [Galaxies]RedshiftGalaxygalaxies [Ultraviolet]Space and Planetary Sciencegalaxies: star formationultraviolet: galaxiesSpectral energy distributionradio continuum: galaxiegalaxies: evolutionUltraviolet
researchProduct

Evolution of Balmer jump selected galaxies in the ALHAMBRA survey

2016

Extragalactic astronomy.-- et al.

Galaxies: generalAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesevolution [Galaxy]high-redshift [Galaxies]Galactic haloBalmer jump0103 physical sciencesGalaxy formation and evolutionAstrophysics::Solar and Stellar Astrophysicshalo [Galaxy]010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy Astrophysics[PHYS]Physics [physics]PhysicsGalaxy: evolution010308 nuclear & particles physicsphotometry [Galaxies]Astrophysics::Instrumentation and Methods for AstrophysicsGalaxies: high-redshiftGalaxies: evolutiongeneral [Galaxies]Astronomy and AstrophysicsGalaxies: photometryevolution [Galaxies]Astrophysics - Astrophysics of GalaxiesGalaxyPhysics::History of PhysicsGalaxy: haloSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & Astrophysics
researchProduct

Stellar physics with the ALHAMBRA photometric system

2011

GREAT-ESF Workshop: Stellar Atmospheres in the Gaia Era 23–24 June 2011, Vrije Universiteit Brussels, Belgium.

PhysicsHistoryEstimation theoryExtinction (astronomy)AstronomyPhotometric systemAstrophysicsStellar classificationComputer Science ApplicationsEducationStarsPhotometry (astronomy)Stellar physicsRange (statistics)
researchProduct

The alhambra photometric system

2010

Aparicio Villegas, Teresa et al.

StandardsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectFOS: Physical sciencesPhotometric systemAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsfundamental parameters [Stars]Instrumentation: photometersPhotometry (optics)Galaxies: distances and redshiftsdistances and redshifts [Galaxies]Astrophysics::Solar and Stellar Astrophysicsobservations [Cosmology]Instrumentation and Methods for Astrophysics (astro-ph.IM)Stars: fundamental parametersAstrophysics::Galaxy Astrophysicsmedia_commonPhysicsCosmology: observationsphotometric [Techniques]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsSecond order momentsWavelengthStarsphotometers [Instrumentation]Space and Planetary ScienceSkyAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Instrumentation and Methods for AstrophysicsTechniques: photometricAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Galaxy clusters and groups in the ALHAMBRA survey

2015

Ascaso, Begoña et al.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Large-scale structure of UniverseFOS: Physical sciencesAstrophysicsX-rays galaxies clustersclusters: general [Galaxies]Galaxies clusters generalobservations [Cosmology]Galaxy clusterPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Cosmology: observationsFísicaAstronomyGalaxies: evolutionAstronomy and Astrophysicsevolution [Galaxies]Cosmology observationsCataloguesGalaxies evolutionSpace and Planetary Science[SDU]Sciences of the Universe [physics]X-rays: galaxies: clustersgalaxies: clusters [X-rays]Galaxies: clusters: generalAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

THE ALHAMBRA SURVEY: EVOLUTION OF GALAXY SPECTRAL SEGREGATION

2016

arXiv:1601.03668v1

statistical [Methods]Cosmology and Nongalactic Astrophysics (astro-ph.CO)Large-scale structure of universeFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesMethods statisticalGalaxies: distances and redshiftsMethods: data analysis0103 physical sciencesdistances and redshifts [Galaxies]observations [Cosmology]data analysis [Methods]010303 astronomy & astrophysicsMethods: statisticalAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsCosmology: observationsFísicaAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesGalaxySpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The ALHAMBRA survey: Bayesian photometric redshifts with 23 bands for 3 deg2

2014

A. Molino et al.

media_common.quotation_subjectPhotometric systemAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsSurveyslaw.inventionPhotometry (optics)Telescopelawdistances and redshifts [Galaxies]Astrophysics::Solar and Stellar Astrophysicsdata analysis [Methods]Astrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSPhotometric redshiftmedia_commonPhysics[PHYS]Physics [physics]photometry [Galaxies]photometric [Techniques]Astrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsCataloguesevolution [Galaxies]GalaxyRedshift13. Climate actionSpace and Planetary ScienceSkyMagnitude (astronomy)Astrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The ALHAMBRA survey: Estimation of the clustering signal encoded in the cosmic variance

2015

[Aims]: The relative cosmic variance (σv) is a fundamental source of uncertainty in pencil-beam surveys and, as a particular case of count-in-cell statistics, can be used to estimate the bias between galaxies and their underlying dark-matter distribution. Our goal is to test the significance of the clustering information encoded in the σv measured in the ALHAMBRA survey. [Methods]: We measure the cosmic variance of several galaxy populations selected with B-band luminosity at 0.35 ≤ z< 1.05 as the intrinsic dispersion in the number density distribution derived from the 48 ALHAMBRA subfields. We compare the observational σv with the cosmic variance of the dark matter expected from the theory…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCorrelation function (astronomy)01 natural sciencesLuminosityStatistics [Galaxies]0103 physical sciencesDark matterStatistical dispersionCluster analysis010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsAstronomy and AstrophysicsCosmic varianceAstrophysics - Astrophysics of GalaxiesGalaxyRedshiftSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Galaxies: Statistics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Stellar populations of galaxies in the ALHAMBRA survey up toz  ∼  1

2018

Aims. We aim at constraining the stellar population properties of quiescent galaxies. These properties reveal how these galaxies evolved and assembled since z similar to 1 up to the present time. Methods. Combining the ALHAMBRA multi-filter photo-spectra with the fitting code for spectral energy distribution MUFFIT (MUlti-Filter FITting), we built a complete catalogue of quiescent galaxies via the dust-corrected stellar mass vs. colour diagram. This catalogue includes stellar population properties, such as age, metallicity, extinction, stellar mass, and photometric redshift, retrieved from the analysis of composited populations based on two independent sets of simple stellar population (SSP…

formation [galaxies]Stellar massStellar populationAstrophysics::High Energy Astrophysical PhenomenaMetallicityPopulationFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences0103 physical sciencesgalaxies: formationAstrophysics::Solar and Stellar Astrophysicseducation010303 astronomy & astrophysicsevolution [galaxies]Astrophysics::Galaxy AstrophysicsPhotometric redshiftPhysicseducation.field_of_study010308 nuclear & particles physicsStar formationAstronomy and Astrophysicsstellar content [galaxies]Astrophysics - Astrophysics of GalaxiesGalaxygalaxies: photometrySpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)photometry [galaxies]galaxies: stellar contentSpectral energy distributionAstrophysics::Earth and Planetary Astrophysicsgalaxies: evolutionAstronomy &amp; Astrophysics
researchProduct

The ALHAMBRA survey: evolution of galaxy clustering since z∼1

2014

We study the clustering of galaxies as function of luminosity and redshift in the range $0.35 &lt; z &lt; 1.25$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cover $2.38 \mathrm{deg}^2$ in 7 independent fields, after applying a detailed angular selection mask, with accurate photometric redshifts, $��_z \lesssim 0.014 (1+z)$, down to $I_{\rm AB} &lt; 24$. Given the depth of the survey, we select samples in $B$-band luminosity down to $L^{\rm th} \simeq 0.16 L^{*}$ at $z = 0.9$. We measure the real-space clustering using the projected correlation function, accounting for photometric redshifts uncert…

statistical [Methods]Cosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCorrelation function (astronomy)01 natural sciencesPhysical cosmologyLuminosityLarge-scale structure of Universe.0103 physical sciencesRange (statistics)distances and redshifts [Galaxies]Sample variance10. No inequalitydata analysis [Methods]observations [Cosmology]010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsAstronomyAstronomy and AstrophysicsGalaxyRedshiftSpace and Planetary ScienceHaloAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct