0000000000150120

AUTHOR

J. M. Pendlebury

showing 6 related works from this author

New constraints on Lorentz invariance violation from the neutron electric dipole moment

2010

We propose an original test of Lorentz invariance in the interaction between a particle spin and an electromagnetic field and report on a first measurement using ultracold neutrons. We used a high sensitivity neutron electric dipole moment (nEDM) spectrometer and searched for a direction dependence of a nEDM signal leading to a modulation of its magnitude at periods of 12 and 24 hours. We constrain such a modulation to $d_{12} < 15 \times 10^{-25} \ e\,{\rm cm}$ and $d_{24} < 10 \times 10^{-25} \ e\,{\rm cm}$ at 95~\% C.L. The result translates into a limit on the energy scale for this type of Lorentz violation effect at the level of ${\cal E}_{LV} > 10^{10}$~GeV.

Electromagnetic fieldPhysicsSpectrometerNeutron electric dipole moment010308 nuclear & particles physicsFOS: Physical sciencesGeneral Physics and AstronomyLorentz covariance[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesSignalModulationQuantum electrodynamics0103 physical sciencesUltracold neutronsSensitivity (control systems)Nuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear Experiment
researchProduct

Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields

2009

We performed ultracold neutron (UCN) storage measurements to search for additional losses due to neutron (n) to mirror-neutron (n') oscillations as a function of an applied magnetic field B. In the presence of a mirror magnetic field B', UCN losses would be maximal for B = B'. We did not observe any indication for nn' oscillations and placed a lower limit on the oscillation time of tau_{nn'} > 12.0 s at 95% C.L. for any B' between 0 and 12.5 uT.

PhysicsNuclear and High Energy PhysicsAntiparticle010308 nuclear & particles physicsOscillationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesHardware_PERFORMANCEANDRELIABILITYFermion[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences3. Good healthMagnetic fieldNuclear physicsTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYAntimatter0103 physical sciencesUltracold neutronsNeutronNuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentNuclear Experiment
researchProduct

Gravitational depolarization of ultracold neutrons : comparison with data

2015

We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients of spin depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several previously unexplained features in the data.

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsField (physics)FOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsGravitationHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutronDetectors and Experimental Techniques010306 general physicsQCLarmor precessionPhysics010308 nuclear & particles physics1420DhDepolarizationInstrumentation and Detectors (physics.ins-det)Magnetic field gradient1130Ernumbers: 1340Em0755GeElectric dipole momentPhysics::Space PhysicsUltracold neutronsAtomic physics
researchProduct

A measurement of the neutron to 199Hg magnetic moment ratio

2014

The neutron gyromagnetic ratio has been measured relative to that of the 199Hg atom with an uncertainty of 0.8 ppm. We employed an apparatus where ultracold neutrons and mercury atoms are stored in the same volume and report the result γn/γHg=3.8424574(30).

inorganic chemicalsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsNeutron magnetic momentAtomic Physics (physics.atom-ph)Astrophysics::High Energy Astrophysical PhenomenaGyromagnetic ratioFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesPhysics - Atomic PhysicsNuclear physicsMagnetic momentGyromagnetic ratio0103 physical sciencesAtomNeutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Physics::Atomic PhysicsNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsCondensed Matter::Quantum Gases[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Magnetic moment010308 nuclear & particles physicsProton magnetic momenttechnology industry and agricultureQC0793Instrumentation and Detectors (physics.ins-det)Ultracold neutrons; Mercury atoms; Magnetic moment; Gyromagnetic ratioQC0770lcsh:QC1-999Mercury atomsElectric dipole momentbiological sciencesUltracold neutronslipids (amino acids peptides and proteins)Astrophysics::Earth and Planetary AstrophysicsAtomic physicsUltracold neutronslcsh:PhysicsPhysics Letters B
researchProduct

Test of Lorentz invariance with spin precession of ultracold neutrons

2009

A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and $^{199}$Hg atoms is reported. %57 No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz invariance violating cosmic anisotropy field $b_{\bot} < 2 \times 10^{-20} {\rm eV}$ (95% C.L.). This is the first limit for the free neutron. This result is also interpreted as a direct limit on the gravitational dipole moment of the neutron $|g_n| < 0.3 $eV/$c^2$ m from a spin-dependent interaction with the Sun. Analyzing the gravitational interaction with the Earth, based on previous data, yields a more stringent limit $|g_n| < 3 \times …

Physics010308 nuclear & particles physicsGeneral Physics and AstronomyFOS: Physical sciencesElementary particleLorentz covariance[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyDipoleQuantum mechanics0103 physical sciencesPrecessionUltracold neutronsNeutronAtomic physicsNuclear Experiment (nucl-ex)010306 general physicsNucleonSpin (physics)Nuclear Experiment
researchProduct

Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.

2015

We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a $|B_0|=1~\text{\mu T}$ magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCN of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of $1.1~\text{pT/cm}$. This novel combination …

Physics - Instrumentation and DetectorsDephasingGeneral Physics and AstronomyFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesResonance (particle physics)Nuclear physics0103 physical sciencesNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentQCPhysicsNeutrons010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Models TheoreticalNeutron spectroscopyMagnetic fieldCold TemperatureElectric dipole momentKineticsSpin echoUltracold neutronsAtomic physicsGravitationPhysical review letters
researchProduct