0000000000150208

AUTHOR

Konstantin Tiurev

0000-0002-9216-3696

Three-dimensional skyrmions in spin-2 Bose–Einstein condensates

We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic phases of a spin-2 Bose-Einstein condensate. These skyrmions exhibit exceptionally high mapping degrees resulting from the versatile symmetries of the corresponding order parameters. We show how these structures can be created in existing experimental setups and study their temporal evolution and lifetime by numerically solving the three-dimensional Gross-Pitaevskii equations for realistic parameter values. Although the biaxial nematic and cyclic phases are observed to be unstable against transition towards the ferromagnetic phase, their lifetimes are long enough for the skyrmions to be imprinted…

research product

Experimental Realization of a Dirac Monopole through the Decay of an Isolated Monopole

We experimentally observe the decay dynamics of deterministically created isolated monopoles in spin-1 Bose-Einstein condensates. As the condensate undergoes a change between magnetic phases, the isolated monopole gradually evolves into a spin configuration hosting a Dirac monopole in its synthetic magnetic field. We characterize in detail the Dirac monopole by measuring the particle densities of the spin states projected along different quantization axes. Importantly, we observe the spontaneous emergence of nodal lines in the condensate density that accompany the Dirac monopole. We also demonstrate that the monopole decay accelerates in weaker magnetic field gradients.

research product

Synthetic electromagnetic knot in a three-dimensional skyrmion

We experimentally simulate a quantum-mechanical particle interacting with knotted electromagnetic fields.

research product

Evolution of an isolated monopole in a spin-1 Bose-Einstein condensate

We simulate the decay dynamics of an isolated monopole defect in the nematic vector of a spin-1 Bose-Einstein condensate during the polar-to-ferromagnetic phase transition of the system. Importantly, the decay of the monopole occurs in the absence of external magnetic fields and is driven principally by the dynamical instability due to the ferromagnetic spin-exchange interactions. An initial isolated monopole is observed to relax into a polar-core spin vortex, thus demonstrating the spontaneous transformation of a point defect of the polar order parameter manifold to a line defect of the ferromagnetic manifold. We also investigate the dynamics of an isolated monopole pierced by a quantum vo…

research product