0000000000150214

AUTHOR

José J. Vallés

Phase Fourier vector model for scale invariant three-dimensional image detection.

A scale invariant 3D object detection method based on phase Fourier transform (PhFT) is addressed. Three-dimensionality is expressed in terms of range images. The PhFT of a range image gives information about the orientations of the surfaces in the 3D object. When the object is scaled, the PhFT becomes a distribution multiplied by a constant factor which is related to the scale factor. Then 3D scale invariant detection can be solved as illumination invariant detection process. Several correlation operations based on vector space representation are applied. Results show the tolerance of detection method to scale besides discrimination against false objects.

research product

Nonlinear pattern recognition correlators based on color-encoding single-channel systems.

In color pattern recognition, color channels are normally processed separately and afterward the correlation outputs are combined. This is the definition of multichannel processing. We combine a single-channel method with nonlinear filtering based on nonlinear correlations. These nonlinear correlations yield better discrimination than common matched filtering. The method codes color information as amplitude and phase distributions and is followed by correlations related to binary decompositions. The technique is based on binary decompositions of the red, green, and blue and the hue, saturation, and intensity monochromatic channels of the reference and of the input scene, after which the bin…

research product

Spherical nonlinear correlations for global invariant three-dimensional object recognition

We define a nonlinear filtering based on correlations on unit spheres to obtain both rotation- and scale-invariant three-dimensional (3D) object detection. Tridimensionality is expressed in terms of range images. The phase Fourier transform (PhFT) of a range image provides information about the orientations of the 3D object surfaces. When the object is sequentially rotated, the amplitudes of the different PhFTs form a unit radius sphere. On the other hand, a scale change is equivalent to a multiplication of the amplitude of the PhFT by a constant factor. The effect of both rotation and scale changes for 3D objects means a change in the intensity of the unit radius sphere. We define a 3D fil…

research product

Three-dimensional object detection under arbitrary lighting conditions

A novel method of 3D object recognition independent of lighting conditions is presented. The recognition model is based on a vector space representation using an orthonormal basis generated by the Lambertian reflectance functions obtained with distant light sources. Changing the lighting conditions corresponds to multiplying the elementary images by a constant factor and because of that, all possible lighting views will be elements that belong to that vector space. The recognition method proposed is based on the calculation of the angle between the vector associated with a certain illuminated 3D object and that subspace. We define the angle in terms of linear correlations to get shift and i…

research product