0000000000150313
AUTHOR
Laura Rodríguez-pérez
Carbon Nanotubes Conjugated with Triazole-Based Tetrathiafulvalene-Type Receptors for C60 Recognition
Fullerene receptors prepared by a twofold CuI -catalyzed azide-alkyne cycloaddition (CuAAC) reaction with -extended tetrathiafulvalene (exTTF) have been covalently linked to singlewalled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). The nanoconjugates obtained were characterized by several analytical, spectroscopic and microscopic techniques (TEM, FTIR, Raman, TGA and XPS), and evaluated as C60 receptors by UV-Vis spectroscopy. The complexation between the exTTF-triazole receptor in the free state and C60 was also studied by UV-Vis and 1 H NMR titrations, and compared with analogous triazole-based tweezer-type receptors containing the electron-acceptor 11,11,12,12-t…
Mono- and Tripodal Porphyrins: Investigation on the Influence of the Number of Pyrene Anchors in Carbon Nanotube and Graphene Hybrids.
A series of molecular precursors, containing one (1 and 3) or three (2 and 4) pyrene anchors, covalently linked to porphyrins (free base or Zn), were prepared and characterized. All of them enable ...
Supramolecular assembly of pyrene-tetrathiafulvalene hybrids on graphene: Structure-property relationships and biosensing activity
Two different molecular receptors (1 and 2) incorporating one and three pyrene units to promote the π–π interaction with the basal plane of graphene are reported. In order to modulate the electronic properties of graphene, the new receptors are endowed with an electron-donor tetrathiafulvalene moiety (exTTF). The resulting non-covalent hybrids have been characterized by different analytical, spectroscopic and microscopic techniques (TGA, Raman, UV-Vis absorption, TEM and XPS), and the supramolecular interaction of the molecular systems with graphene has been investigated by theoretical calculations. The electrochemical behavior of the pyrene-exTTF hybrids onto distinct graphene-based materi…
Non-covalent graphene nanobuds from mono- and tripodal binding motifs.
Graphene nanobuds were prepared via the non-covalent anchoring of C60-based molecules endowed with one or three pyrene units, respectively. TGA, FTIR, UV-Vis and TEM investigations confirmed the formation of nanohybrids. For the two molecular derivatives, striking differences were determined in their interaction with graphene or carbon surfaces by Raman, cyclic voltammetry and molecular mechanics calculations, revealing the important role of pyrene adsorption in modulating the electronic properties of the nanohybrids.