0000000000150485

AUTHOR

Arezoo Mokhberi

showing 4 related works from this author

Trapped Rydberg ions: a new platform for quantum information processing

2020

In this chapter, we present an overview of experiments with trapped Rydberg ions and outline the advantages and challenges of developing applications of this new platform for quantum computing, sensing and simulation. Trapped Rydberg ions feature several important properties, unique in their combination: they are tightly bound in a harmonic potential of a Paul trap, in which their internal and external degrees of freedom can be controlled in a precise fashion. High fidelity state preparation of both internal and motional states of the ions has been demonstrated, and the internal states have been employed to store and manipulate qubit information. Furthermore, strong dipolar interactions can…

Condensed Matter::Quantum GasesQuantum PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesPhysics::Atomic PhysicsQuantum Physics (quant-ph)Physics - Atomic Physics
researchProduct

Precision measurement of the ionization energy of a single trapped $^{40}$Ca$^+$ ion by Rydberg series excitation

2020

A complete set of spectroscopic data is indispensable when using Rydberg states of trapped ions for quantum information processing. We carried out Rydberg series spectroscopy for $nS_{1/2}$ states with $38 \leq n \leq 65$ and for $nD_{5/2}$ states with $37\leq n \leq 50$ on a single trapped $^{40}$Ca$^+$ ion. From a nonlinear regression to resonance frequencies, we determined the ionization energy of 2 870 575.582(15) GHz, measured 60 times more accurately as compared to the accepted value and contradicting it by 7.5 standard deviations. We confirm quantum defect values of $\delta_{S_{1/2}}=1.802995(5)$ and $\delta_{D_{5/2}}=0.626888(9)$ for $nS_{1/2}$ and $nD_{5/2}$ states respectively, wh…

Quantum PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesPhysics::Atomic PhysicsQuantum Physics (quant-ph)Physics - Atomic Physics
researchProduct

Determination of quantum defect for the Rydberg P series of Ca II

2019

We present an experimental investigation of the Rydberg 23 P$_{1/2}$ state of laser-cooled $^{40}$Ca$^+$ ions in a radiofrequency ion trap. Using micromotion sideband spectroscopy on a narrow quadrupole transition, the oscillating electric field at the ion position was precisely characterised, and the modulation of the Rydberg transition due to this field was minimised. From a correlated fit to this P line and previously measured P and F level energies of Ca II, we have determined the ionization energy of 95 751.916(32) $\rm {cm}^{-1}$, in agreement with the accepted value, and the quantum defect for the $n$ P$_{1/2}$ states.

PhysicsQuantum PhysicsField (physics)Atomic Physics (physics.atom-ph)FOS: Physical sciencesCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsPhysics - Atomic PhysicsIon010309 opticssymbols.namesakeQuantum defect0103 physical sciencesQuadrupoleRydberg formulasymbolsIon trapPhysics::Atomic PhysicsAtomic physicsIonization energy010306 general physicsSpectroscopyQuantum Physics (quant-ph)
researchProduct

Trapped Rydberg ions: A new platform for quantum information processing

2020

Abstract In this chapter, we present an overview of experiments with trapped Rydberg ions and outline the advantages and challenges of developing applications of this new platform for quantum computing, sensing, and simulation. Trapped Rydberg ions feature several important properties, unique in their combination: they are tightly bound in a harmonic potential of a Paul trap, in which their internal and external degrees of freedom can be controlled in a precise fashion. High fidelity state preparation of both internal and motional states of the ions has been demonstrated, and the internal states have been employed to store and manipulate qubit information. Furthermore, strong dipolar intera…

Condensed Matter::Quantum GasesPhysicsQuantum simulator02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIonsymbols.namesakeNormal modePolarizabilityQubit0103 physical sciencesRydberg formulasymbolsPhysics::Atomic PhysicsIon trapAtomic physics010306 general physics0210 nano-technologyQuantum computer
researchProduct