0000000000153879

AUTHOR

F. Salemi

showing 13 related works from this author

All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems

2021

Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most s…

binary: orbitneutron star: binaryPhysics and Astronomy (miscellaneous)Astronomybinary [neutron star]AstrophysicsGravitational Waves; LIGO (Observatory); Neutron Stars01 natural sciencesneutron starsGeneral Relativity and Quantum CosmologyMonte Carlo: Markov chainPhysics Particles & Fieldsbinary starsbinary systemsBinary SystemsLIGOgravitational waveQCQBpulsarastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studySettore FIS/03Physicsorbit [binary]General relativityPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenabinary stardata analysis methodsensitivity [detector]General relativitygr-qcfrequency [modulation]Populationneutron star: spinFOS: Physical sciencesalternative theories of gravityMarkov chain [Monte Carlo]General Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsGravitational Waves Neutron Stars Binary Systems LIGO VirgoLIGO (Observatory)emission [gravitational radiation]Pulsarbinary: coalescence0103 physical sciencesBinary starddc:530spin [neutron star]background [gravitational radiation]010306 general physicseducationSTFCOrbital elementsGravitational WavesScience & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundmodulation: frequencyRCUKNeutron StarsLIGOgravitational radiation detectordetector: sensitivityNeutron starVIRGOgravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikcoalescence [binary][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]binary stars; neutron stars
researchProduct

Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

2018

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generic…

AstronomyTestingdetectionGeneral Physics and AstronomyEFFICIENTTESTING RELATIVISTIC GRAVITYTensorsSpectral shapes01 natural sciencesGeneral Relativity and Quantum CosmologyGravitational wave backgroundEnergy densityTOOLQCComputingMilieux_MISCELLANEOUSstochastic modelMathematical physicsQBPhysics[PHYS]Physics [physics]Stochastic systemsGravitational effectsarticleVectorsPolarization (waves)gravitational wavesastro-ph.CO[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - Cosmology and Nongalactic AstrophysicsGeneral RelativityCosmology and Nongalactic Astrophysics (astro-ph.CO)General relativitygr-qcFOS: Physical sciencesexperimental studies of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesRelativityReference frequencyPhysics and Astronomy (all)General Relativity and Quantum CosmologyTheory of relativityScalar modesTests of general relativity0103 physical sciencesAdvanced LIGOddc:530Tensor010306 general physicsSTFCGravitational Wavespolarization010308 nuclear & particles physicsGravitational waveRCUKAstrophysical sourcesLIGOPhysics and AstronomygravitationRADIATIONStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyGravitational Waves Stochastic Background Advanced LIGO
researchProduct

Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs

2021

We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called {\tt PyStoch} on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitational-wave emission from spatially-extended sources. Neither technique found eviden…

gravitational radiation: anisotropyPhysics and Astronomy (miscellaneous)gravitational radiation: stochasticAstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsCosmology & Astrophysicsenergy: fluxenergy: densitygravitational radiation: energyLIGOQCQBPhysicsSettore FIS/01Spectral indexPhysicsGalactic CenterAmplitudeGeneral relativitySidereal timePhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]gravitational radiation: power spectrumGravitationdata analysis methodAnisotropic stochastic gravitational-wave backgroundExperimental studies of gravityFOS: Physical sciencesO3O2General Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsStochastic Background Gravitational Waves LIGO Virgo O1 O2 O3O1Gravitational wavesGeneral Relativity and Quantum CosmologyUPPER LIMITSstatistical analysis0103 physical sciencesadvanced LIGO and Virgoddc:530KAGRAKAGRACosmology & Astrophysics010306 general physicsSTFCgravitational waves; LIGO; VirgoGravitational WavesScience & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundRCUKGalaxyLIGOVIRGOgravitational radiation: emissionspectrum: densityRADIATIONCROSS-CORRELATION SEARCHStochastic BackgroundDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikgalaxyExperimental studies of gravity; General relativity; Gravitational waves
researchProduct

Tests of General Relativity with GW170817

2019

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polari…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyTestingGravitational WaveGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmologystrong fieldddc:550general relativityLIGOQCSettore FIS/01PhysicsPhysicsGravitational effectsarticlePolarization (waves)Gravitational-wave signalsExtra dimensionsgravitational wavesPhysical SciencesExtra dimensions[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Large extra dimensiondispersionBinary neutron starsgravitational radiation: polarizationGeneral RelativityGeneral relativitygr-qcPhysics MultidisciplinaryGRAVITATIONAL-WAVE OBSERVATIONSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)gravitational wavesblack holesGravity wavesMASSgravitational radiation: direct detectionGravitation and Astrophysicselectromagnetic field: productionRelativityGeneral Relativity and Quantum CosmologyDipole radiationsGRAVITYTests of general relativitygravitation: weak field0103 physical sciencesddc:530High Energy Physicscapture010306 general physicsGravitational Wave; General RelativitySTFCradiation: dipolepolarizationScience & TechnologyStrong fieldGravitational wavegravitational radiationRCUKbinary: compactgravitational radiation detectorLIGONeutron starVIRGODewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikNewtonianshigher-dimensional
researchProduct

GW190521: A Binary Black Hole Merger with a Total Mass of 150  M⊙

2020

LIGO Scientific Collaboration and Virgo Collaboration: et al.

AstronomyGeneral Physics and Astronomydetector: networkAstrophysicsGravitational waves; Binary black holes Intermediate mass black holes01 natural sciencesGeneral Relativity and Quantum Cosmologygravitational waves; black holesGW190521 BBHIntermediate mass black holesLIGO10. No inequalityQCQBSettore FIS/01astro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPAIR-INSTABILITYSettore FIS/05Physicsstatistical analysis: BayesianSupernovaPhysical SciencesPhysique des particules élémentaires[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational wavedata analysis methodBinary black holes Intermediate mass black holesgr-qcPhysics MultidisciplinaryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Physics and Astronomy(all)Gravitation and AstrophysicsGravitational wavespair-instabilitySettore FIS/05 - Astronomia e AstrofisicaBinary black holeBinary black holesNeutron starsgravitational wavessupernova0103 physical sciences010306 general physicsLuminosity distanceSTFCGW190521Science & Technology9. Industry and infrastructureGravitational wavegravitational radiationRCUKblack hole: massgravitational waves black holegravitational radiation detectorLIGORedshiftBlack holewave: modelVIRGOblack hole: binaryIntermediate-mass black holegravitational radiation: emissionBBH[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

2017

Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, {\it narrow-band} analyses methods have been developed, allowing a fully coherent search for gravitational waves from known …

Gravitational-wave observatoryPhysics and Astronomy (miscellaneous)Astronomy01 natural sciencesrotationneutron starsGeneral Relativity and Quantum Cosmologygravitational waves; LIGO; stochastic gravitational-waveLIGOneutron star010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCpulsarQBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Gravitational Waves neutron stars advanced detectors narrow-band searchDetectorAmplitude[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaasymmetryCoherence (physics)young pulsarinterferometerneutron star: spinFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)proper motionadvanced detectorsGravitational wavesPulsar0103 physical sciencesddc:530Gravitational Waves010308 nuclear & particles physicsGravitational wavegravitational radiation530 PhysikLIGOgravitational radiation detectorComputational physicscoherencedetector: sensitivityNeutron starelectromagneticPhysics and AstronomyGravitational waves; Pulsarnarrow-band searchDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]discovery
researchProduct

Constraining the p -Mode– g -Mode Tidal Instability with GW170817

2019

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: An overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB!pgpg) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB!pgpg=…

Physics010308 nuclear & particles physicsGravitational waveGeneral Physics and AstronomyBreaking wave7. Clean energy01 natural sciencesInstabilityComputational physicsNeutron starStarsAmplitude13. Climate action0103 physical sciencesWaveformExtreme value theory010303 astronomy & astrophysicsPhysical Review Letters
researchProduct

Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

2014

Made available in DSpace on 2022-04-29T07:21:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-11-17 We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of …

MECHANISMPhysics and Astronomy (miscellaneous)AstrophysicsFOLLOW-UP OBSERVATIONSASTROPHYSICAL SOURCESIceCubeneutrinoDetection of gravitational waveGravitational waves neutrinoObservatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QCLIGO Scientific CollaborationQBPhysicsGAMMA-RAY BURSTS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYNuclear and High Energy Physics; Physics and Astronomy (miscellaneous)NEUTRINOSNeutrino detectorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGNeutrinoSENSITIVITYGIANT FLARENuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]95.85.RyMUON NEUTRINOSAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATIONGravitational wavesGeneral Relativity and Quantum CosmologyINSTABILITIESSettore FIS/05 - Astronomia e AstrofisicaCORE-COLLAPSE SUPERNOVAE[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530SDG 7 - Affordable and Clean EnergyCORE-COLLAPSEDETECTOR/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyGravitational wave95.85.SzMAGNETIZED NEUTRON-STARS[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyTRANSIENTS95.85.Sz; 95.85.RyRELATIVISTIC STARSLIGOPhysics and Astronomy[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Gamma-ray burstEMISSIONEnergy (signal processing)
researchProduct

Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network

2019

Gravitational wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event was detected in this sear…

binary: massneutron star: binaryAstronomybinary: angular momentumAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsLIMITSclustersLIGOgravitational waveGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01black hole: spinPhysicsintermediate mass black hole binarieNumerical relativityGeneral relativitygravitational wavesgravitational waves; intermediate mass black hole binaries; Advanced LIGO and VirgoPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenastarsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalternative theories of gravitySTARS; CLUSTERS; LIMITSAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black hole0103 physical sciencesddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsSTFCScience & Technology010308 nuclear & particles physicsGravitational waveAdvanced LIGO and Virgointermediate mass black hole binariesRCUKGravitational Wave Physicsblack hole: massMass ratiobinary: compact04.80.NnLIGOgravitational radiation detectorNeutron starVIRGOblack hole: binaryIntermediate-mass black holerelativity theorygravitational radiation: emission95.55.Ymmass ratioDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik07.05.Kflimits[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]CLUSTERSSTARSGravitational waves Black holes (astronomy) Gravitational self force
researchProduct

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

2013

A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…

AstrofísicaEXPLOSIONSHigh energyPhotonPOINT SOURCESSUPERCONDUCTING COSMIC STRINGSGravitational waves / experimentsGravitational waves/experimentsAstrophysics01 natural scienceshigh energy neutrinosgravitational wavesgravitational waves / experiment010303 astronomy & astrophysicsQCmedia_commonLine (formation)QBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSdark matter detectorsGravitational waves / experiments; Neutrino astronomy; Astronomy and Astrophysicshigh energy neutrinos[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsgravitational waves; gravitational waves / experiments; neutrino astronomy; high energy neutrinos; high energy neutrinosgravitational wavesgravitational wavesparticle physics - cosmology connectionNeutrino astronomyCOSMIC STRINGSRELATIVISTIC JETSNeutrinoAstrophysics - High Energy Astrophysical Phenomenasupersymmetry and cosmology[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]gravitational waves / experiments; neutrino astronomyTELESCOPEmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaSCIENCE RUNFOS: Physical sciencesddc:500.2GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; SUPERCONDUCTING COSMIC STRINGS; MAGNETAR GIANT FLARES; SCIENCE RUN; RELATIVISTIC JETS; POINT SOURCES; BLACK-HOLES; LOCAL-RATE; TELESCOPEGravitational wavesGeneral Relativity and Quantum CosmologyCORE-COLLAPSE SUPERNOVAESettore FIS/05 - Astronomia e AstrofisicaCoincidentneutrino experiments0103 physical sciences010306 general physicsMAGNETAR GIANT FLARESBLACK-HOLESHigh Energy Astrophysical PhenomenaGravitational waveAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsDRIVENUniverseLIGOGIANT FLARESLOCAL-RATEFISICA APLICADALUMINOSITYRADIATIONHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run

2019

We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well-modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant event…

AstronomyGravitational waves detectionAstrophysicsdetector: network01 natural sciencesSignalGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsGravitational waves detection Stochastic gravitational-wavebinary [black hole]LIGOgravitational waveQCQBmedia_commonastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsgravitational waves neutron starsgravitational wavesGeneral relativityburst [gravitational radiation]network [detector]Physical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]direct detection [gravitational radiation]Advanced VirgoAstrophysics - High Energy Astrophysical PhenomenaFrequency bandsensitivity [detector]gr-qcmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalternative theories of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionemission [gravitational radiation]Binary black holeSettore FIS/05 - Astronomia e Astrofisicabinary: coalescence0103 physical sciencesgravitational radiation: burstAdvanced LIGOWaveformddc:530010306 general physicscosmic stringSTFCScience & Technology010308 nuclear & particles physicsGravitational waveRCUKStochastic gravitational-waveGravitational Wave PhysicsLIGOgravitational radiation detectorgravitational waves; Advanced LIGO; Advanced VirgoCosmic stringdetector: sensitivityVIRGOPhysics and Astronomyblack hole: binarySkygravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikcoalescence [binary][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing R…

2019

We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source and, in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact-binary coalescence searches using the Fermi Gamma-ray Burst Monitor (GBM), leveraging its all-sky and broad energy coverage. Candidates are ranked and compared to background to measure signific…

AstrofísicaGravitacióAstronomyAstrophysics::High Energy Astrophysical Phenomenagamma-ray burst: generalFOS: Physical sciencesAstrophysicsAstronomy & Astrophysicsgeneral [gamma-ray burst]01 natural sciencesCoincidenceCoincident0103 physical sciences010306 general physics010303 astronomy & astrophysicsgravitational waveSTFCQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsastro-ph.HEScience & TechnologySolar flareGravitational wavegamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary ScienceRCUKAstronomy and AstrophysicsAstronomy and AstrophysicLIGOPhysics and Astronomygravitational wavesSpace and Planetary SciencePhysical Sciencesgamma-ray burst: general; gravitational wavesgeneral; gravitational waves; Astronomy and Astrophysics; Space and Planetary Science [gamma-ray burst]False alarmAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Fermi Gamma-ray Space Telescope
researchProduct

GW170817: Measurements of Neutron Star Radii and Equation of State

2018

On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenneutron star: binaryAstronomyGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyGRAVITATIONAL-WAVESGW170817BINARIESddc:550DENSELIGODENSE MATTEREquation of State010303 astronomy & astrophysicsQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEPhysicsNeutron Star RadiusPhysicsGravitational effectsEquations of stateParametrizationsElectromagnetic observationsGravitational-wave signals3. Good healthQUADRUPOLE-MOMENTSMacroscopic propertiesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sourceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaEquations of state of nuclear matterGravitational wavesaturation: densityBinary neutron starsNUCLEON MATTEREquations of state of nuclear matter; Gravitational wave sources; Gravitational waves; Nuclear matter in neutron starsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaGW170817 Neutron Star Radius Equation of StatePhysics Multidisciplinaryneutron star: spinFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesgravitational radiation: direct detectionGravitation and AstrophysicsNuclear matter in neutron starsGravitational waveselectromagnetic field: productionPhysics and Astronomy (all)Pulsargalaxy: binary0103 physical sciencesddc:530NeutronMASSESSTFCequation of state: parametrizationAstrophysics::Galaxy AstrophysicsNeutronsExtreme conditionsGravitational wave sourcesEquation of stateScience & TechnologyNeutron Star Interior Composition Explorer010308 nuclear & particles physicsGravitational wavegravitational radiationRCUKFlocculationSaturation densityUNIVERSAL RELATIONSStarsLIGOgravitational radiation detectorNeutron starStarsVIRGOPhysics and Astronomygravitational radiation: emissionneutron star: binary: coalescenceDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]MATTER
researchProduct