0000000000154076
AUTHOR
Alavattam Sreedhara
Synthesis and characterization of vanadyl(IV) complexes of Schiff bases derived from anthranilic acid and salicylaldehyde (or its derivatives) or acetylacetone. Single crystal X-ray structures of the oxidized products
Anhydrous, dimeric vanadyl(IV) complexes of Schiff bases derived from [1+1] condensation of salicylaldehyde (or its derivatives) and anthranilic acid, have been synthesized from CH3CN and were characterized by elemental analysis, FTIR, EPR, absorption, TGA, cyclic voltammetry and room temperature magnetic susceptibility measurements. These complexes were found to be oxidized by air in polar solvents like MeOH and DMF to V-V products. The E(1/2) values were found to be around 660 mV indicating that the carboxylate group favours vanadyl(IV) binding when compared to the alkoxo-bound vanadium complexes. Oxidative instability of these complexes are dependent on the substituent on the salicylalde…
Synthesis, structure and reactivity of trans-UO22+ complexes of OH-containing ligands †
trans-Dioxouranium dinuclear complexes of a few OH-containing ligands possessing N-, O-binding sites were synthesized and characterised. Seven of these were also structurally characterised by single crystal X-ray diffraction. All these complexes exhibit symmetric U2O2 core structures in addition to having a seven-co-ordinated environment about each uranium centre. Even when the ligand possessed more than one CH2OH group, only one such group was found to be involved both in chelation as well as in bridging. These complexes exhibited facile transmetallation reactions with vanadium and molybdenum precursors. Though their core structures are alike, the complexes differ in their lattice arrangem…
Recognition of oxovanadium(V) species and its separation from other metal species through selective complexation by some acyclic ligands
Acyclic molecules possessing –OH (phenoxo and alkoxo type) groups and imine or amine moieties have been developed to sense the specific preference for VO3+ species. These molecules also showed a capability to quantitatively separate oxovanadium(V) species from a reaction mixture containing metal species of V, Mo, U, Fe, and Mn ions in solution. A cascade quantitative separation of VO3+ followed by cis–MoO2+2 followed by trans –UO2+2 species is demonstrated from their mixture. Synthesis and structural details of oxo-species of vanadium molybdenum and uranium are also discussed. Factors influencing the complexation of these molecules towards oxo metal species of V, Mo and U are also addressed.