Sustaining persistent lava lakes: Observations from high-resolution gas measurements at Villarrica volcano, Chile
International audience; Active lava lakes – as the exposed upper part of magmatic columns – are prime locations to investigate the conduit flow processes operating at active, degassing volcanoes. Persistent lava lakes require a constant influx of heat to sustain a molten state at the Earth's surface. Several mechanisms have been proposed to explain how such heat transfer can operate efficiently. These models make contrasting predictions with respect to the flow dynamics in volcanic conduits and should result in dissimilar volatile emissions at the surface. Here we look at high-frequency SO2 fluxes, plume composition, thermal emissions and aerial video footage from the Villarrica lava lake i…
Unrest at the Nevados de Chillán volcanic complex: a failed or yet to unfold magmatic eruption?
Resuming erupting activity at volcanoes that have been long quiescent poses a significant challenge to hazard assessment, as it require assessment of whether the change in activity is an isolated event or the beginning of a new eruptive sequence. Such inception is often poorly characterised as quiescent volcanoes tend to be poorly equipped and not extensively monitored, especially with respect to gas geochemistry. Here, we report gas composition and flux measurements from a newly opened vent at the very onset of eruptive activity at the Nevados de Chillán volcanic complex (Chile) in January-February 2016. The molar proportions of H2O, CO2, SO2, H2S and H2 gases are found to be 98.4, 0.97, 0…