0000000000154218

AUTHOR

Sophia Chen

showing 3 related works from this author

Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field

2014

International audience; Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recentl…

jetsPhysicsJet (fluid)MultidisciplinaryShock (fluid dynamics)Young stellar objectAstrophysics::High Energy Astrophysical PhenomenaFlow (psychology)PlasmaConical surfaceAstrophysics01 natural sciencesSIMULATIONS010305 fluids & plasmasMagnetic fieldCOLLIMATION[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con]DISCOVERY0103 physical sciencesDG-TAURI010303 astronomy & astrophysicsACCRETION DISCSAstrophysics::Galaxy AstrophysicsDRIVEN JETS
researchProduct

Laboratory disruption of scaled astrophysical outflows by a misaligned magnetic field

2021

The shaping of astrophysical outflows into bright, dense, and collimated jets due to magnetic pressure is here investigated using laboratory experiments. Here we look at the impact on jet collimation of a misalignment between the outflow, as it stems from the source, and the magnetic field. For small misalignments, a magnetic nozzle forms and redirects the outflow in a collimated jet. For growing misalignments, this nozzle becomes increasingly asymmetric, disrupting jet formation. Our results thus suggest outflow/magnetic field misalignment to be a plausible key process regulating jet collimation in a variety of objects from our Sun’s outflows to extragalatic jets. Furthermore, they provide…

ScienceAstrophysics::High Energy Astrophysical PhenomenaNozzleoutflows magnetohydrodynamics(MHD) shockwaves astrophysical jetsGeneral Physics and AstronomyFOS: Physical sciencesAstrophysics01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyCollimated lightSettore FIS/05 - Astronomia E AstrofisicaAmbient field0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsMagnetic pressure010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsLaboratory astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)MultidisciplinaryQLaser-produced plasmasGeneral ChemistryPhysics - Plasma PhysicsMagnetic fieldPlasma Physics (physics.plasm-ph)Astrophysics - Solar and Stellar AstrophysicsPhysics::Accelerator PhysicsOutflowHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Laboratory evidence for proton energization by collisionless shock surfing

2021

Charged particles can be accelerated to high energies by collisionless shock waves in astrophysical environments, such as supernova remnants. By interacting with the magnetized ambient medium, these shocks can transfer energy to particles. Despite increasing efforts in the characterization of these shocks from satellite measurements at Earth’s bow shock as well as powerful numerical simulations, the underlying acceleration mechanism or a combination thereof is still widely debated. Here we show that astrophysically relevant super-critical quasi-perpendicular magnetized collisionless shocks can be produced and characterized in the laboratory. We observe the characteristics of super-criticali…

Shock waveProtonAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesAccelerationSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesBow shock (aerodynamics)010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsMechanicsplasmasPhysics - Plasma PhysicsCharged particleComputer Science::Computers and Society[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Magnetic fieldShock (mechanics)Plasma Physics (physics.plasm-ph)Supernova13. Climate actionPhysics::Space PhysicsPhysics::Accelerator Physics
researchProduct