0000000000154568

AUTHOR

Samuele Maria Marcora

showing 3 related works from this author

Central alterations of neuromuscular function and feedback from group III-IV muscle afferents following exhaustive high-intensity one-leg dynamic exe…

2015

The aims of this investigation were to describe the central alterations of neuromuscular function induced by exhaustive high-intensity one-leg dynamic exercise (OLDE, study 1) and to indirectly quantify feedback from group III-IV muscle afferents via muscle occlusion (MO, study 2) in healthy adult male humans. We hypothesized that these central alterations and their recovery are associated with changes in afferent feedback. Both studies consisted of two time-to-exhaustion tests at 85% peak power output. In study 1, voluntary activation level (VAL), M-wave, cervicomedullary motor evoked potential (CMEP), motor evoked potential (MEP), and MEP cortical silent period (CSP) of the knee extensor…

MaleTime Factorscervicomedullary stimulationRefractory Period ElectrophysiologicalPhysiologynear-infrared spectroscopysilent periodmedicine.medical_treatmentendurance exerciseendurance performanceOcclusionMedicineEvoked potentialhumansquadriceps femorisFeedback PhysiologicalMotor CortexPain PerceptionAnatomyTranscranial Magnetic StimulationLower ExtremityAnesthesiamuscle fatiguecorticospinal excitabilitymedicine.symptomFemoral NerveperformanceMuscle contractionMuscle ContractionAdultPain ThresholdMean arterial pressurePainperipheral fatiguecomplex mixturesYoung AdultPhysiology (medical)Threshold of painskeletal-muscleNeurons AfferentMuscle SkeletalExerciseMuscle fatiguebusiness.industrycontractionEvoked Potentials MotorElectric Stimulationcentral fatigueTranscranial magnetic stimulation[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Physical EnduranceSilent periodsport-sciencebusiness
researchProduct

The cardinal exercise stopper: Muscle fatigue, muscle pain or perception of effort?

2018

The capacity to sustain high-intensity aerobic exercise is essential for endurance performance. Therefore, it is important to understand what is the factor limiting time to exhaustion (TTE) in healthy and fit adults. In Study 1, maximal voluntary cycling power (MVCP) was measured in 11 volunteers before and immediately after a high-intensity TTE test on cycle ergometer. Cadence was 60 rpm in both the MVCP and TTE tests. Despite a 35% loss in MVCP, power produced during the final MVCP test (mean ± SD 469 ± 111 W) was significantly higher than the power required by the TTE test (269 ± 55 W) (P < 0.001). In Study 2, 12 participants performed a cold pressor test (CPT) to the limit of tolerance …

medicine.medical_specialtyMuscle fatiguebusiness.industrySkeletal muscle030229 sport sciencesPerceived exertionLimitingbody regions03 medical and health sciences0302 clinical medicinemedicine.anatomical_structureInternal medicinePerceived exertion Endurance performance Cycling Motivation Fatigue Pain Effort Skeletal muscleCardiologyMedicineAerobic exerciseCycle ergometerbusinessCadence030217 neurology & neurosurgeryTime to exhaustion
researchProduct

Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors

2016

International audience; Transcranial direct current stimulation (tDCS) can increase cortical excitability of a targeted brain area, which may affect endurance exercise performance. However, optimal electrode placement for tDCS remains unclear. We tested the effect of two different tDCS electrode montages for improving exercise performance. Nine subjects underwent a control (CON), placebo (SHAM) and two different tDCS montage sessions in a randomized design. In one tDCS session, the anodal electrode was placed over the left motor cortex and the cathodal on contralateral forehead (HEAD), while for the other montage the anodal electrode was placed over the left motor cortex and cathodal electr…

Malemedicine.medical_treatmentIsometric exerciseFunctional LateralitytDCSRandom Allocation0302 clinical medicineHeart RateSingle-Blind Methodprefrontal cortexprimary motor cortexTranscranial direct-current stimulationexerciseGeneral NeuroscienceMotor Cortexvoluntary activationTranscranial Magnetic StimulationPeripheralmedicine.anatomical_structureMuscle FatiguePsychologyFemoral Nerveperformancemedicine.medical_specialtyShoulderintracortical inhibitionNeuroscience(all)B100brain stimulationPlacebo03 medical and health sciencesYoung AdultPhysical medicine and rehabilitationEndurance trainingIsometric ContractionHeart rateexcitabilitymedicineHumansneuromuscular functionMuscle Skeletalmagnetic stimulationhuman muscle fatigueLeg030229 sport sciencesEvoked Potentials MotorC600QPElectric Stimulationbody regionsBrain stimulation[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]ForeheadPhysical therapyPerceptionsupraspinal factors030217 neurology & neurosurgery
researchProduct