0000000000154646

AUTHOR

Luis M. Martinez

showing 2 related works from this author

Topographic Independent Component Analysis reveals random scrambling of orientation in visual space

2017

Neurons at primary visual cortex (V1) in humans and other species are edge filters organized in orientation maps. In these maps, neurons with similar orientation preference are clustered together in iso-orientation domains. These maps have two fundamental properties: (1) retinotopy, i.e. correspondence between displacements at the image space and displacements at the cortical surface, and (2) a trade-off between good coverage of the visual field with all orientations and continuity of iso-orientation domains in the cortical space. There is an active debate on the origin of these locally continuous maps. While most of the existing descriptions take purely geometric/mechanistic approaches whi…

0301 basic medicineComputer scienceVisionVisual spaceStatistics as Topiclcsh:MedicineSocial SciencesSpace (mathematics)Scramblingchemistry.chemical_compound0302 clinical medicineCognitionLearning and MemoryAnimal CellsMedicine and Health SciencesPsychologylcsh:Sciencemedia_commonVisual CortexNeuronsMammalsObject RecognitionCoding MechanismsBrain MappingMultidisciplinaryGeographyOrientation (computer vision)Visual fieldmedicine.anatomical_structureVertebratesSensory PerceptionCellular TypesAnatomyNeuronal TuningResearch ArticleCartographyPrimatesmedia_common.quotation_subjectOcular AnatomyRetina03 medical and health sciencesTopographic MapsOcular SystemMemoryPerceptionOrientationNeuronal tuningmedicineAnimalsHumansCortical surfaceComputational NeuroscienceRetinabusiness.industrylcsh:ROrganismsCognitive PsychologyBiology and Life SciencesComputational BiologyRetinalPattern recognitionCell Biology030104 developmental biologyVisual cortexchemistryRetinotopyCellular NeuroscienceAmniotesEarth SciencesCognitive Sciencelcsh:QPerceptionArtificial intelligencebusiness030217 neurology & neurosurgeryNeurosciencePLoS ONE
researchProduct

The Brain’s Camera. Optimal Algorithms for Wiring the Eye to the Brain Shape How We See

2016

The problem of sending information at long distances, without significant attenuation and at a low cost, is common to both artificial and natural environments. In the brain, a widespread strategy to solve the cost-efficiency trade off in long distance communication is the presence of convergent pathways, or bottlenecks. In the visual system, for example, to preserve resolution, information is acquired by a first layer with a large number of neurons (the photoreceptors in the retina) and then compressed into a much smaller number of units in the output layer (the retinal ganglion cells), to send that information to the brain at the lowest possible metabolic cost. Recently, we found experimen…

RetinaComputer sciencebusiness.industryFunction (mathematics)Lateral geniculate nucleusRetinal ganglionmedicine.anatomical_structureRetinal ganglion cellReceptive fieldCortex (anatomy)Digital image processingmedicineComputer visionArtificial intelligencebusinessAlgorithm
researchProduct