0000000000154655

AUTHOR

Ester Marco‐noales

0000-0001-7973-0345

Plant-associated microbiota as a source of antagonistic bacteria against the phytopathogen Erwinia amylovora.

Control of bacterial plant diseases is a major concern, as they affect economically important species and spread easily, such as the case of fire blight of rosaceous caused by Erwinia amylovora. In the search for alternatives to the use of agrochemicals and antibiotics, this work presents a screening of natural bacterial antagonists of this relevant and devastating phytopathogen. We recovered bacterial isolates from different plant tissues and geographical origins and then selected those with the strongest ability to reduce fire blight symptoms ex vivo and remarkable in vitro antagonistic activity against E. amylovora. None of them elicited a hypersensitivity reaction in tobacco leaves, mos…

research product

Survival Strategy of Erwinia amylovora against Copper: Induction of the Viable-but-Nonculturable State

Copper compounds, widely used to control plant-pathogenic bacteria, have traditionally been employed against fire blight, caused by Erwinia amylovora. However, recent studies have shown that some phytopathogenic bacteria enter into the viable-but-nonculturable (VBNC) state in the presence of copper. To determine whether copper kills E. amylovora or induces the VBNC state, a mineral medium without copper or supplemented with 0.005, 0.01, or 0.05 mM Cu2+ was inoculated with 107 CFU/ml of this bacterium and monitored over 9 months. Total and viable cell counts were determined by epifluorescence microscopy using the LIVE/DEAD kit and by flow cytometry with 5-cyano-2,3-ditolyl tetrazolium chlori…

research product

Transmission to Eels, Portals of Entry, and Putative Reservoirs of Vibrio vulnificus Serovar E (Biotype 2)

ABSTRACT Vibrio vulnificus serovar E (formerly biotype 2) is the etiologic agent that is responsible for the main infectious disease affecting farmed eels. Although the pathogen can theoretically use water as a vehicle for disease transmission, it has not been isolated from tank water during epizootics to date. In this work, the mode of transmission of the disease to healthy eels, the portals of entry of the pathogen into fish, and their putative reservoirs have been investigated by means of laboratory and field experiments. Results of the experiments of direct and indirect host-to-host transmission, patch contact challenges, and oral-anal intubations suggest that water is the prime vehicle…

research product

Survival of fish-virulent strains ofPhotobacterium damselaesubsp.damselaein seawater under starvation conditions

The survival of fish-virulent strains of Photobacterium damselae subsp. damselae in seawater microcosms, with and without sediment, was investigated. The strains survived as culturable bacteria at 14 and 22 degrees C for at least 1 year, and infectivity for fish was maintained. At 5 degrees C, cells lost culturability on solid media, but this was recovered when the temperature was increased to 22 degrees C. Finally, morphological changes in the bacterium (rod to coccus), and production of vesicles and extracellular material were observed during the time of starvation. The overall results suggest that seawater and sediment can act as reservoirs for these virulent strains.

research product

Influence of aquatic microbiota on the survival in water of the human and eel pathogen Vibrio vulnificus serovar E

Summary The eel and human pathogen Vibrio vulnificus serovar E (biotype 2) is seldom isolated from natural waters, although it can survive in sterilized artificial seawater microcosms for years. The main objective of the present study was to investigate whether aquatic microbiota can limit its survival and recovery from water samples. A set of preliminary experiments of survival in microcosms containing natural seawater and water from eel farms showed that the persistence of this pathogen was mainly controlled by grazing, and secondarily by bacterial competition. The bacte- rial competition was further analysed in artificial seawater microcosms co-inoculated with selected virulent serovar E…

research product

Exopolysaccharides favor the survival of Erwinia amylovora under copper stress through different strategies.

Erwinia amylovora causes fire blight, a destructive disease of rosaceous plants very difficult to control. We demonstrated that copper, employed to control plant diseases, induces the "viable-but-nonculturable" (VBNC) state in E. amylovora. Moreover, it was previously reported that copper increases production of its main exopolysaccharide (EPS), amylovoran. In this work, the copper-complexing ability of amylovoran and levan, other major EPS of E. amylovora, was demonstrated. Following this, EPS-deficient mutants were used to determine the role of these EPSs in survival of this bacterium in AB mineral medium with copper, compared to their wild type strain and AB without copper. Tot…

research product

Medfly Ceratitis capitata as Potential Vector for Fire Blight Pathogen Erwinia amylovora: Survival and Transmission

Monitoring the ability of bacterial plant pathogens to survive in insects is required for elucidating unknown aspects of their epidemiology and for designing appropriate control strategies. Erwinia amylovora is a plant pathogenic bacterium that causes fire blight, a devastating disease in apple and pear commercial orchards. Studies on fire blight spread by insects have mainly focused on pollinating agents, such as honeybees. However, the Mediterranean fruit fly (medfly) Ceratitis capitata (Diptera: Tephritidae), one of the most damaging fruit pests worldwide, is also common in pome fruit orchards. The main objective of the study was to investigate whether E. amylovora can survive and be tra…

research product

Isolation of Vibrio vulnificus Serovar E from Aquatic Habitats in Taiwan

ABSTRACT The existence of strains of Vibrio vulnificus serovar E that are avirulent for eels is reported in this work. These isolates were recovered from water and oysters and differed from eel virulent strains in (i) fermentation and utilization of mannitol, (ii) ribotyping after Hin dIII digestion, and (iii) susceptibility to eel serum. Lipopolysaccharide of these strains lacked the highest molecular weight immunoreactive bands, which are probably involved in serum resistance.

research product

Transcriptional response of Erwinia amylovora to copper shock: in vivo role of the copA gene

Fire blight is a devastating plant disease caused by the bacterium Erwinia amylovora, and its control is frequently based on the use of copper-based compounds whose mechanisms of action are not well known. Consequently, in this article, we investigate the response of E. amylovora to copper shock by a whole-genome microarray approach. Transcriptional analyses showed that, in the presence of copper, 23 genes were increased in expression; these genes were classified mainly into the transport and stress functional categories. Among them, the copA gene was strongly induced and regulated in a finely tuned manner by copper. Mutation of copA, soxS, arcB, yjcE, ygcF, yhhQ, galF and EAM_3469 genes re…

research product

Effects of salinity and temperature on long-term survival of the eel pathogen Vibrio vulnificus biotype 2 (serovar E)

ABSTRACT Vibrio vulnificus biotype 2 (serovar E) is a primary eel pathogen. In this study, we performed long-term survival experiments to investigate whether the aquatic ecosystem can be a reservoir for this bacterium. We have used microcosms containing water of different salinities (ranging from 0.3 to 3.8%) maintained at three temperatures (12, 25, and 30°C). Temperature and salinity significantly affected long-term survival: (i) the optimal salinity for survival was 1.5%; (ii) lower salinities reduced survival, although they were nonlethal; and (ii) the optimal temperature for survival was dependent on the salinity (25°C for microcosms at 0.3 and 0.5% and 12°C for microcosms at 1.5 to 3.…

research product