0000000000154690
AUTHOR
Martín Gastón
Changes in power curve shapes as an indicator of fatigue during dynamic contractions.
The purpose of this study was to analyze exercise-induced leg fatigue during a dynamic fatiguing task by examining the shapes of power vs. time curves through the combined use of several statistical methods: B-spline smoothing, functional principal components and (supervised and unsupervised) classification. In addition, granulometric size distributions were also computed to allow for comparison of curves coming from different subjects. Twelve physically active men participated in one acute heavy-resistance exercise protocol which consisted of five sets of 10 repetition maximum leg press with 120 s of rest between sets. To obtain a smooth and accurate representation of the data, a basis of …
Using mathematical morphology for unsupervised classification of functional data
This paper is concerned with the unsupervised classification of functional data by using mathematical morphology. Different morphological operators are used to extract relevant structures of the functions (considered as sets through their subgraph representations). These operators can be considered as preprocessing tools whose outputs are also functional data. We explore some dissimilarity measures and clustering methods for the classification of the transformed data. Our approach is illustrated through a detailed analysis of two data sets. These techniques, which have mainly been used in image processing, provide a flexible and robust toolbox for improving the results in unsupervised funct…
Measuring Dissimilarity Between Curves by Means of Their Granulometric Size Distributions
The choice of a dissimilarity measure between curves is a key point for clustering functional data. Functions are usually pointwise compared and, in many situations, this approach is not appropriate. Mathematical Morphology provides us with a toolbox to overcome this problem. We propose some dissimilarity measures based on morphological granulometries and their performance is evaluated on some functional datasets.