0000000000156881
AUTHOR
Gerardo Adesso
Entanglement replication in driven-dissipative many body systems
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.
Standard forms and entanglement engineering of multimode Gaussian states under local operations
We investigate the action of local unitary operations on multimode (pure or mixed) Gaussian states and single out the minimal number of locally invariant parametres which completely characterise the covariance matrix of such states. For pure Gaussian states, central resources for continuous-variable quantum information, we investigate separately the parametre reduction due to the additional constraint of global purity, and the one following by the local-unitary freedom. Counting arguments and insights from the phase-space Schmidt decomposition and in general from the framework of symplectic analysis, accompany our description of the standard form of pure n-mode Gaussian states. In particula…
Observation of time-invariant coherence in a room temperature quantum simulator
The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It has been recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magnet…
Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states
We address the estimation of the loss parameter of a bosonic channel probed by arbitrary signals. Unlike the optimal Gaussian probes, which can attain the ultimate bound on precision asymptotically either for very small or very large losses, we prove that Fock states at any fixed photon number saturate the bound unconditionally for any value of the loss. In the relevant regime of low-energy probes, we demonstrate that superpositions of the first low-lying Fock states yield an absolute improvement over any Gaussian probe. Such few-photon states can be recast quite generally as truncations of de-Gaussified photon-subtracted states.
Probing Quantum Frustrated Systems via Factorization of the Ground State
The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physica…
Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence
We show that the phenomenon of frozen discord, exhibited by specific classes of two-qubit states under local nondissipative decoherent evolutions, is a common feature of all known bona fide measures of general quantum correlations. All those measures, despite inducing typically inequivalent orderings on the set of nonclassically correlated states, return a constant value in the considered settings. Every communication protocol which relies on quantum correlations as resource will run with a performance completely unaffected by noise in the specified dynamical conditions. We provide a geometric interpretation of this
Entanglement in Gaussian matrix-product states
Gaussian matrix product states are obtained as the outputs of projection operations from an ancillary space of M infinitely entangled bonds connecting neighboring sites, applied at each of N sites of an harmonic chain. Replacing the projections by associated Gaussian states, the 'building blocks', we show that the entanglement range in translationally-invariant Gaussian matrix product states depends on how entangled the building blocks are. In particular, infinite entanglement in the building blocks produces fully symmetric Gaussian states with maximum entanglement range. From their peculiar properties of entanglement sharing, a basic difference with spin chains is revealed: Gaussian matrix…
Quantum benchmark for teleportation and storage of squeezed states.
We provide a quantum benchmark for teleportation and storage of single-mode squeezed states with zero displacement and a completely unknown degree of squeezing along a given direction. For pure squeezed input states, a fidelity higher than 81.5% has to be attained in order to outperform any classical strategy based on an estimation of the unknown squeezing and repreparation of squeezed states. For squeezed thermal input states, we derive an upper and a lower bound on the classical average fidelity which tighten for moderate degree of mixedness. These results enable a critical discussion of recent experiments with squeezed light.
Operational Quantification of Continuous-Variable Correlations
We quantify correlations (quantum and/or classical) between two continuous variable modes in terms of how many correlated bits can be extracted by measuring the sign of two local quadratures. On Gaussian states, such `bit quadrature correlations' majorize entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, ideal and real de-Gaussified photon-subtracted states, and mixtures of pure Gaussian states, the bit correlations are shown to be a {\em monotonic} function of the negativity. This yields a feasible, operational way to quantitatively measure non-Gaussian entanglement in current experiments by means of direct homodyne d…
Continuous-variable entanglement sharing in noninertial frames
We study the distribution of entanglement between modes of a free scalar field from the perspective of observers in uniform acceleration. We consider a two-mode squeezed state of the field from an inertial perspective, and analytically study the degradation of entanglement due to the Unruh effect, in the cases of either one or both observers undergoing uniform acceleration. We find that for two observers undergoing finite acceleration, the entanglement vanishes between the lowest frequency modes. The loss of entanglement is precisely explained as a redistribution of the inertial entanglement into multipartite quantum correlations among accessible and unaccessible modes from a non-inertial p…
Strong monogamy of bipartite and genuine multipartite entanglement: The Gaussian case
We demonstrate the existence of general constraints on distributed quantum correlations, which impose a trade-off on bipartite and multipartite entanglement at once. For all N-mode Gaussian states under permutation invariance, we establish exactly a monogamy inequality, stronger than the traditional one, that by recursion defines a proper measure of genuine N-partite entanglement. Strong monogamy holds as well for subsystems of arbitrary size, and the emerging multipartite entanglement measure is found to be scale invariant. We unveil its operational connection with the optimal fidelity of continuous variable teleportation networks.
Genuine multipartite entanglement of symmmetric Gaussian states: Strong monogamy, unitary localization, scaling behavior, and molecular sharing structure
We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of [Adesso & Illuminati, Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows to quantify genuine N-partite entanglement in terms of the "residual contangle" not encoded into 2,...,K,...,(N-1)-partite quantum correlations. The explicit expression of this entanglement measure is derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states multi-…
Generalized Geometric Quantum Speed Limits
The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the non uniqueness of a bona fide measure of distinguishability defined on the quantum state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum spee…
Universal freezing of quantum correlations within the geometric approach
Quantum correlations in a composite system can be measured by resorting to a geometric approach, according to which the distance from the state of the system to a suitable set of classically correlated states is considered. Here we show that all distance functions, which respect natural assumptions of invariance under transposition, convexity, and contractivity under quantum channels, give rise to geometric quantifiers of quantum correlations which exhibit the peculiar freezing phenomenon, i.e., remain constant during the evolution of a paradigmatic class of states of two qubits each independently interacting with a non-dissipative decohering environment. Our results demonstrate from first …
Foundations of quantum mechanics and their impact on contemporary society
Nearing a century since its inception, quantum mechanics is as lively as ever. Its signature manifestations, such as superposition, wave-particle duality, uncertainty principle, entanglement and nonlocality, were long confronted as weird predictions of an incomplete theory, paradoxes only suitable for philosophical discussions, or mere mathematical artifacts with no counterpart in the physical reality. Nevertheless, decades of progress in the experimental verification and control of quantum systems have routinely proven detractors wrong. While fundamental questions still remain wide open on the foundations and interpretations of quantum mechanics, its modern technological applications have …
Multipartite entanglement in three-mode Gaussian states of continuous variable systems: Quantification, sharing structure and decoherence
We present a complete analysis of multipartite entanglement of three-mode Gaussian states of continuous variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations will be quantified by a proper convex roof extension of the squared logarithmic negativity (the contangle), satisfying a monogamy relation for multimode Gaussian states, whose proof will be reviewed and elucidated. The residual contangle, emerging from the monog…
Monogamy Inequality for Distributed Gaussian Entanglement
We show that for all n-mode Gaussian states of continuous variable systems, the entanglement shared among n parties exhibits the fundamental monogamy property. The monogamy inequality is proven by introducing the Gaussian tangle, an entanglement monotone under Gaussian local operations and classical communication, which is defined in terms of the squared negativity in complete analogy with the case of n-qubit systems. Our results elucidate the structure of quantum correlations in many-body harmonic lattice systems.
Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator
The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It was recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for an indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and it requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magne…
Frozen Quantum Coherence
We analyse under which dynamical conditions the coherence of an open quantum system is totally unaffected by noise. For a single qubit, specific measures of coherence are found to freeze under different conditions, with no general agreement between them. Conversely, for an N-qubit system with even N, we identify universal conditions in terms of initial states and local incoherent channels such that all bona fide distance-based coherence monotones are left invariant during the entire evolution. This finding also provides an insightful physical interpretation for the freezing phenomenon of quantum correlations beyond entanglement. We further obtain analytical results for distance-based measur…
Optical state engineering, quantum communication, and robustness of entanglement promiscuity in three-mode Gaussian states
We present a novel, detailed study on the usefulness of three-mode Gaussian states states for realistic processing of continuous-variable quantum information, with a particular emphasis on the possibilities opened up by their genuine tripartite entanglement. We describe practical schemes to engineer several classes of pure and mixed three-mode states that stand out for their informational and/or entanglement properties. In particular, we introduce a simple procedure -- based on passive optical elements -- to produce pure three-mode Gaussian states with {\em arbitrary} entanglement structure (upon availability of an initial two-mode squeezed state). We analyze in depth the properties of dist…
Robustness of asymmetry and coherence of quantum states
Quantum states may exhibit asymmetry with respect to the action of a given group. Such an asymmetry of states can be considered as a resource in applications such as quantum metrology, and it is a concept that encompasses quantum coherence as a special case. We introduce explicitly and study the robustness of asymmetry, a quantifier of asymmetry of states that we prove to have many attractive properties, including efficient numerical computability via semidefinite programming, and an operational interpretation in a channel discrimination context. We also introduce the notion of asymmetry witnesses, whose measurement in a laboratory detects the presence of asymmetry. We prove that properly c…
Coexistence of unlimited bipartite and genuine multipartite entanglement: Promiscuous quantum correlations arising from discrete to continuous-variable systems
Quantum mechanics imposes 'monogamy' constraints on the sharing of entanglement. We show that, despite these limitations, entanglement can be fully 'promiscuous', i.e. simultaneously present in unlimited two-body and many-body forms in states living in an infinite-dimensional Hilbert space. Monogamy just bounds the divergence rate of the various entanglement contributions. This is demonstrated in simple families of N-mode (N >= 4) Gaussian states of light fields or atomic ensembles, which therefore enable infinitely more freedom in the distribution of information, as opposed to systems of individual qubits. Such a finding is of importance for the quantification, understanding and potenti…
Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems
For continuous-variable systems, we introduce a measure of entanglement, the continuous variable tangle ({\em contangle}), with the purpose of quantifying the distributed (shared) entanglement in multimode, multipartite Gaussian states. This is achieved by a proper convex roof extension of the squared logarithmic negativity. We prove that the contangle satisfies the Coffman-Kundu-Wootters monogamy inequality in all three--mode Gaussian states, and in all fully symmetric $N$--mode Gaussian states, for arbitrary $N$. For three--mode pure states we prove that the residual entanglement is a genuine tripartite entanglement monotone under Gaussian local operations and classical communication. We …
Activation of indistinguishability-based quantum coherence for enhanced metrological applications with particle statistics imprint
Quantum coherence, an essential feature of quantum mechanics allowing quantum superposition of states, is a resource for quantum information processing. Coherence emerges in a fundamentally different way for nonidentical and identical particles. For the latter, a unique contribution exists linked to indistinguishability that cannot occur for nonidentical particles. Here, we experimentally demonstrate this additional contribution to quantum coherence with an optical setup, showing that its amount directly depends on the degree of indistinguishability, and exploiting it in a quantum phase discrimination protocol. Furthermore, the designed setup allows for simulating fermionic particles with p…
Theory of ground state factorization in quantum cooperative systems.
We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows to determine rigorously existence, location, and exact form of separable ground states in a large variety of, generally non-exactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.
Hierarchy and dynamics of trace distance correlations
We define and analyze measures of correlations for bipartite states based on trace distance. For Bell diagonal states of two qubits, in addition to the known expression for quantum correlations using this metric, we provide analytic expressions for the classical and total correlations. The ensuing hierarchy of correlations based on trace distance is compared to the ones based on relative entropy and Hilbert-Schmidt norm. Although some common features can be found, the trace distance measure is shown to differentiate from the others in that the closest uncorrelated state to a given bipartite quantum state is not given by the product of the marginals, and further, the total correlations are s…
Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence
Quantifying coherence is an essential endeavour for both quantum foundations and quantum technologies. Here the robustness of coherence is defined and proven a full monotone in the context of the recently introduced resource theories of quantum coherence. The measure is shown to be observable, as it can be recast as the expectation value of a coherence witness operator for any quantum state. The robustness of coherence is evaluated analytically on relevant classes of states, and an efficient semidefinite program that computes it on general states is given. An operational interpretation is finally provided: the robustness of coherence quantifies the advantage enabled by a quantum state in a …
Unifying approach to the quantification of bipartite correlations by Bures distance
The notion of distance defined on the set of states of a composite quantum system can be used to quantify total, quantum and classical correlations in a unifying way. We provide new closed formulae for classical and total correlations of two-qubit Bell-diagonal states by considering the Bures distance. Complementing the known corresponding expressions for entanglement and more general quantum correlations, we thus complete the quantitative hierarchy of Bures correlations for Bell-diagonal states. We then explicitly calculate Bures correlations for two relevant families of states: Werner states and rank-2 Bell-diagonal states, highlighting the subadditivity which holds for total correlations…
Entanglement in continuous-variable systems: recent advances and current perspectives
We review the theory of continuous-variable entanglement with special emphasis on foundational aspects, conceptual structures, and mathematical methods. Much attention is devoted to the discussion of separability criteria and entanglement properties of Gaussian states, for their great practical relevance in applications to quantum optics and quantum information, as well as for the very clean framework that they allow for the study of the structure of nonlocal correlations. We give a self-contained introduction to phase-space and symplectic methods in the study of Gaussian states of infinite-dimensional bosonic systems. We review the most important results on the separability and distillabil…
Indistinguishability-enabled coherence for quantum metrology
Quantum coherence plays a fundamental and operational role in different areas of physics. A resource theory has been developed to characterize the coherence of distinguishable particles systems. Here we show that indistinguishability of identical particles is a source of coherence, even when they are independently prepared. In particular, under spatially local operations, states that are incoherent for distinguishable particles, can be coherent for indistinguishable particles under the same procedure. We present a phase discrimination protocol, in which we demonstrate the operational advantage of using two indistinguishable particles rather than distinguishable ones. The coherence due to th…
Teleportation of squeezing: optimization using non-Gaussian resources
We study the continuous-variable quantum teleportation of states, statistical moments of observables, and scale parameters such as squeezing. We investigate the problem both in ideal and imperfect Vaidman-Braunstein-Kimble protocol setups. We show how the teleportation fidelity is maximized and the difference between output and input variances is minimized by using suitably optimized entangled resources. Specifically, we consider the teleportation of coherent squeezed states, exploiting squeezed Bell states as entangled resources. This class of non-Gaussian states includes photon-added and photon-subtracted squeezed states as special cases. At variance with the case of entangled Gaussian re…
Controllable Gaussian-Qubit Interface for Extremal Quantum State Engineering
We study state engineering through bilinear interactions between two remote qubits and two-mode Gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.