0000000000156925

AUTHOR

Harri M. T. Saarikoski

Defining classifier regions for WSD ensembles using word space features

Based on recent evaluation of word sense disambiguation (WSD) systems [10], disambiguation methods have reached a standstill. In [10] we showed that it is possible to predict the best system for target word using word features and that using this 'optimal ensembling method' more accurate WSD ensembles can be built (3-5% over Senseval state of the art systems with the same amount of possible potential remaining). In the interest of developing if more accurate ensembles, w e here define the strong regions for three popular and effective classifiers used for WSD task (Naive Bayes – NB, Support Vector Machine – SVM, Decision Rules – D) using word features (word grain, amount of positive and neg…

research product

Building an Optimal WSD Ensemble Using Per-Word Selection of Best System

In Senseval workshops for evaluating WSD systems [1,4,9], no one system or system type (classifier algorithm, type of system ensemble, extracted feature set, lexical knowledge source etc.) has been discovered that resolves all ambiguous words into their senses in a superior way. This paper presents a novel method for selecting the best system for target word based on readily available word features (number of senses, average amount of training per sense, dominant sense ratio). Applied to Senseval-3 and Senseval-2 English lexical sample state-of-art systems, a net gain of approximately 2.5 – 5.0% (respectively) in average precision per word over the best base system is achieved. The method c…

research product

Case-Sensitivity of Classifiers for WSD: Complex Systems Disambiguate Tough Words Better

We present a novel method for improving disambiguation accuracy by building an optimal ensemble (OE) of systems where we predict the best available system for target word using a priori case factors (e.g. amount of training per sense). We report promising results of a series of best-system prediction tests (best prediction accuracy is 0.92) and show that complex/simple systems disambiguate tough/easy words better. The method provides the following benefits: (1) higher disambiguation accuracy for virtually any base systems (current best OE yields close to 2% accuracy gain over Senseval-3 state of the art) and (2) economical way of building more effective ensembles of all types (e.g. optimal,…

research product